Plasmon-driven synthesis of individual metal@semiconductor core@shell nanoparticles
Light-driven heating of plasmonic metal nanoparticles can activate temperature-sensitive reactions at the nanoscale. Here, the authors exploit such nanoscale plasmonic reactors to drive, control, and spectroscopically track the growth of single metal@semiconductor core@shell nanoparticles.
Main Authors: | , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Nature Publishing Group
2020-08-01
|
Series: | Nature Communications |
Online Access: | https://doi.org/10.1038/s41467-020-17789-y |
Summary: | Light-driven heating of plasmonic metal nanoparticles can activate temperature-sensitive reactions at the nanoscale. Here, the authors exploit such nanoscale plasmonic reactors to drive, control, and spectroscopically track the growth of single metal@semiconductor core@shell nanoparticles. |
---|---|
ISSN: | 2041-1723 |