Aging Mechanisms and Monitoring of Cable Polymers

Aging mechanisms of two polymeric insulation materials that are used widely in nuclear power plant low-voltage cables; cross-linked polyethylene (XLPE) and ethylene propylene rubber/ethylene propylene diene terpolymer (EPR/EPDM), are reviewed. A summary of various nondestructive methods suitable for...

Full description

Bibliographic Details
Main Authors: Nicola Bowler, Shuaishuai Liu
Format: Article
Language:English
Published: The Prognostics and Health Management Society 2015-12-01
Series:International Journal of Prognostics and Health Management
Subjects:
Online Access:https://papers.phmsociety.org/index.php/ijphm/article/view/2287
Description
Summary:Aging mechanisms of two polymeric insulation materials that are used widely in nuclear power plant low-voltage cables; cross-linked polyethylene (XLPE) and ethylene propylene rubber/ethylene propylene diene terpolymer (EPR/EPDM), are reviewed. A summary of various nondestructive methods suitable for evaluation of cable insulation is given. A capacitive sensor capable of making local nondestructive measurements of capacitance and dissipation factor on cable polymers, and potentially suitable for in situ cable monitoring, is introduced. Correlating values of elongation-at-break, indenter modulus, capacitance and dissipation factor measured on a set of 47 aged flame-resistant EPR samples shows a higher correlation between indenter modulus and dissipation factor than between indenter modulus and elongation-at-break.
ISSN:2153-2648
2153-2648