A FRET-based DNA biosensor tracks OmpR-dependent acidification of Salmonella during macrophage infection.

In bacteria, one paradigm for signal transduction is the two-component regulatory system, consisting of a sensor kinase (usually a membrane protein) and a response regulator (usually a DNA binding protein). The EnvZ/OmpR two-component system responds to osmotic stress and regulates expression of out...

Full description

Bibliographic Details
Main Authors: Smarajit Chakraborty, Hideaki Mizusaki, Linda J Kenney
Format: Article
Language:English
Published: Public Library of Science (PLoS) 2015-04-01
Series:PLoS Biology
Online Access:http://europepmc.org/articles/PMC4397060?pdf=render
id doaj-c6df8c9cb7964801a4e0f297367f5f00
record_format Article
spelling doaj-c6df8c9cb7964801a4e0f297367f5f002021-07-02T08:01:28ZengPublic Library of Science (PLoS)PLoS Biology1544-91731545-78852015-04-01134e100211610.1371/journal.pbio.1002116A FRET-based DNA biosensor tracks OmpR-dependent acidification of Salmonella during macrophage infection.Smarajit ChakrabortyHideaki MizusakiLinda J KenneyIn bacteria, one paradigm for signal transduction is the two-component regulatory system, consisting of a sensor kinase (usually a membrane protein) and a response regulator (usually a DNA binding protein). The EnvZ/OmpR two-component system responds to osmotic stress and regulates expression of outer membrane proteins. In Salmonella, EnvZ/OmpR also controls expression of another two-component system SsrA/B, which is located on Salmonella Pathogenicity Island (SPI) 2. SPI-2 encodes a type III secretion system, which functions as a nanomachine to inject bacterial effector proteins into eukaryotic cells. During the intracellular phase of infection, Salmonella switches from assembling type III secretion system structural components to secreting effectors into the macrophage cytoplasm, enabling Salmonella to replicate in the phagocytic vacuole. Major questions remain regarding how bacteria survive the acidified vacuole and how acidification affects bacterial secretion. We previously reported that EnvZ sensed cytoplasmic signals rather than extracellular ones, as intracellular osmolytes altered the dynamics of a 17-amino-acid region flanking the phosphorylated histidine. We reasoned that the Salmonella cytoplasm might acidify in the macrophage vacuole to activate OmpR-dependent transcription of SPI-2 genes. To address these questions, we employed a DNA-based FRET biosensor ("I-switch") to measure bacterial cytoplasmic pH and immunofluorescence to monitor effector secretion during infection. Surprisingly, we observed a rapid drop in bacterial cytoplasmic pH upon phagocytosis that was not predicted by current models. Cytoplasmic acidification was completely dependent on the OmpR response regulator, but did not require known OmpR-regulated genes such as ompC, ompF, or ssaC (SPI-2). Microarray analysis highlighted the cadC/BA operon, and additional experiments confirmed that it was repressed by OmpR. Acidification was blocked in the ompR null background in a Cad-dependent manner. Acid-dependent activation of OmpR stimulated type III secretion; blocking acidification resulted in a neutralized cytoplasm that was defective for SPI-2 secretion. Based upon these findings, we propose that Salmonella infection involves an acid-dependent secretion process in which the translocon SseB moves away from the bacterial cell surface as it associates with the vacuolar membrane, driving the secretion of SPI-2 effectors such as SseJ. New steps in the SPI-2 secretion process are proposed.http://europepmc.org/articles/PMC4397060?pdf=render
collection DOAJ
language English
format Article
sources DOAJ
author Smarajit Chakraborty
Hideaki Mizusaki
Linda J Kenney
spellingShingle Smarajit Chakraborty
Hideaki Mizusaki
Linda J Kenney
A FRET-based DNA biosensor tracks OmpR-dependent acidification of Salmonella during macrophage infection.
PLoS Biology
author_facet Smarajit Chakraborty
Hideaki Mizusaki
Linda J Kenney
author_sort Smarajit Chakraborty
title A FRET-based DNA biosensor tracks OmpR-dependent acidification of Salmonella during macrophage infection.
title_short A FRET-based DNA biosensor tracks OmpR-dependent acidification of Salmonella during macrophage infection.
title_full A FRET-based DNA biosensor tracks OmpR-dependent acidification of Salmonella during macrophage infection.
title_fullStr A FRET-based DNA biosensor tracks OmpR-dependent acidification of Salmonella during macrophage infection.
title_full_unstemmed A FRET-based DNA biosensor tracks OmpR-dependent acidification of Salmonella during macrophage infection.
title_sort fret-based dna biosensor tracks ompr-dependent acidification of salmonella during macrophage infection.
publisher Public Library of Science (PLoS)
series PLoS Biology
issn 1544-9173
1545-7885
publishDate 2015-04-01
description In bacteria, one paradigm for signal transduction is the two-component regulatory system, consisting of a sensor kinase (usually a membrane protein) and a response regulator (usually a DNA binding protein). The EnvZ/OmpR two-component system responds to osmotic stress and regulates expression of outer membrane proteins. In Salmonella, EnvZ/OmpR also controls expression of another two-component system SsrA/B, which is located on Salmonella Pathogenicity Island (SPI) 2. SPI-2 encodes a type III secretion system, which functions as a nanomachine to inject bacterial effector proteins into eukaryotic cells. During the intracellular phase of infection, Salmonella switches from assembling type III secretion system structural components to secreting effectors into the macrophage cytoplasm, enabling Salmonella to replicate in the phagocytic vacuole. Major questions remain regarding how bacteria survive the acidified vacuole and how acidification affects bacterial secretion. We previously reported that EnvZ sensed cytoplasmic signals rather than extracellular ones, as intracellular osmolytes altered the dynamics of a 17-amino-acid region flanking the phosphorylated histidine. We reasoned that the Salmonella cytoplasm might acidify in the macrophage vacuole to activate OmpR-dependent transcription of SPI-2 genes. To address these questions, we employed a DNA-based FRET biosensor ("I-switch") to measure bacterial cytoplasmic pH and immunofluorescence to monitor effector secretion during infection. Surprisingly, we observed a rapid drop in bacterial cytoplasmic pH upon phagocytosis that was not predicted by current models. Cytoplasmic acidification was completely dependent on the OmpR response regulator, but did not require known OmpR-regulated genes such as ompC, ompF, or ssaC (SPI-2). Microarray analysis highlighted the cadC/BA operon, and additional experiments confirmed that it was repressed by OmpR. Acidification was blocked in the ompR null background in a Cad-dependent manner. Acid-dependent activation of OmpR stimulated type III secretion; blocking acidification resulted in a neutralized cytoplasm that was defective for SPI-2 secretion. Based upon these findings, we propose that Salmonella infection involves an acid-dependent secretion process in which the translocon SseB moves away from the bacterial cell surface as it associates with the vacuolar membrane, driving the secretion of SPI-2 effectors such as SseJ. New steps in the SPI-2 secretion process are proposed.
url http://europepmc.org/articles/PMC4397060?pdf=render
work_keys_str_mv AT smarajitchakraborty afretbaseddnabiosensortracksomprdependentacidificationofsalmonelladuringmacrophageinfection
AT hideakimizusaki afretbaseddnabiosensortracksomprdependentacidificationofsalmonelladuringmacrophageinfection
AT lindajkenney afretbaseddnabiosensortracksomprdependentacidificationofsalmonelladuringmacrophageinfection
AT smarajitchakraborty fretbaseddnabiosensortracksomprdependentacidificationofsalmonelladuringmacrophageinfection
AT hideakimizusaki fretbaseddnabiosensortracksomprdependentacidificationofsalmonelladuringmacrophageinfection
AT lindajkenney fretbaseddnabiosensortracksomprdependentacidificationofsalmonelladuringmacrophageinfection
_version_ 1721335271535935488