Spazi planari metrici
<p>We call planar space a triple <em>(S,L,P)</em>, where <em>(S,L)</em> is a finite linear space non reduced to a line and <em>P</em> is a family of proper subspaces of <em>(S,L)</em>, called planes, such that every plane contains three non-colli...
Main Authors: | , |
---|---|
Format: | Article |
Language: | English |
Published: |
Università degli Studi di Catania
2001-05-01
|
Series: | Le Matematiche |
Online Access: | http://www.dmi.unict.it/ojs/index.php/lematematiche/article/view/228 |
id |
doaj-c6d4ccc03a3949dc8604163471f2b454 |
---|---|
record_format |
Article |
spelling |
doaj-c6d4ccc03a3949dc8604163471f2b4542020-11-25T03:41:46ZengUniversità degli Studi di CataniaLe Matematiche0373-35052037-52982001-05-01561171181206Spazi planari metriciSandro RajolaMaria Scafati Tallini<p>We call planar space a triple <em>(S,L,P)</em>, where <em>(S,L)</em> is a finite linear space non reduced to a line and <em>P</em> is a family of proper subspaces of <em>(S,L)</em>, called planes, such that every plane contains three non-collinear points and through three non-collinear points there is a unique plane of <em>P</em>.</p><p>In <em>(S,L,P)</em> we define a metric which allows us to study the perspectivities between the triangles of <em>(S,L,P)</em>.</p>http://www.dmi.unict.it/ojs/index.php/lematematiche/article/view/228 |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
Sandro Rajola Maria Scafati Tallini |
spellingShingle |
Sandro Rajola Maria Scafati Tallini Spazi planari metrici Le Matematiche |
author_facet |
Sandro Rajola Maria Scafati Tallini |
author_sort |
Sandro Rajola |
title |
Spazi planari metrici |
title_short |
Spazi planari metrici |
title_full |
Spazi planari metrici |
title_fullStr |
Spazi planari metrici |
title_full_unstemmed |
Spazi planari metrici |
title_sort |
spazi planari metrici |
publisher |
Università degli Studi di Catania |
series |
Le Matematiche |
issn |
0373-3505 2037-5298 |
publishDate |
2001-05-01 |
description |
<p>We call planar space a triple <em>(S,L,P)</em>, where <em>(S,L)</em> is a finite linear space non reduced to a line and <em>P</em> is a family of proper subspaces of <em>(S,L)</em>, called planes, such that every plane contains three non-collinear points and through three non-collinear points there is a unique plane of <em>P</em>.</p><p>In <em>(S,L,P)</em> we define a metric which allows us to study the perspectivities between the triangles of <em>(S,L,P)</em>.</p> |
url |
http://www.dmi.unict.it/ojs/index.php/lematematiche/article/view/228 |
work_keys_str_mv |
AT sandrorajola spaziplanarimetrici AT mariascafatitallini spaziplanarimetrici |
_version_ |
1724528342320807936 |