Spazi planari metrici

<p>We call planar space a triple <em>(S,L,P)</em>, where <em>(S,L)</em> is a finite linear space non reduced to a line and <em>P</em> is a family of proper subspaces of <em>(S,L)</em>, called planes, such that every plane contains three non-colli...

Full description

Bibliographic Details
Main Authors: Sandro Rajola, Maria Scafati Tallini
Format: Article
Language:English
Published: Università degli Studi di Catania 2001-05-01
Series:Le Matematiche
Online Access:http://www.dmi.unict.it/ojs/index.php/lematematiche/article/view/228
id doaj-c6d4ccc03a3949dc8604163471f2b454
record_format Article
spelling doaj-c6d4ccc03a3949dc8604163471f2b4542020-11-25T03:41:46ZengUniversità degli Studi di CataniaLe Matematiche0373-35052037-52982001-05-01561171181206Spazi planari metriciSandro RajolaMaria Scafati Tallini<p>We call planar space a triple <em>(S,L,P)</em>, where <em>(S,L)</em> is a finite linear space non reduced to a line and <em>P</em> is a family of proper subspaces of <em>(S,L)</em>, called planes, such that every plane contains three non-collinear points and through three non-collinear points there is a unique plane of <em>P</em>.</p><p>In <em>(S,L,P)</em> we define a metric which allows us to study the perspectivities between the triangles of <em>(S,L,P)</em>.</p>http://www.dmi.unict.it/ojs/index.php/lematematiche/article/view/228
collection DOAJ
language English
format Article
sources DOAJ
author Sandro Rajola
Maria Scafati Tallini
spellingShingle Sandro Rajola
Maria Scafati Tallini
Spazi planari metrici
Le Matematiche
author_facet Sandro Rajola
Maria Scafati Tallini
author_sort Sandro Rajola
title Spazi planari metrici
title_short Spazi planari metrici
title_full Spazi planari metrici
title_fullStr Spazi planari metrici
title_full_unstemmed Spazi planari metrici
title_sort spazi planari metrici
publisher Università degli Studi di Catania
series Le Matematiche
issn 0373-3505
2037-5298
publishDate 2001-05-01
description <p>We call planar space a triple <em>(S,L,P)</em>, where <em>(S,L)</em> is a finite linear space non reduced to a line and <em>P</em> is a family of proper subspaces of <em>(S,L)</em>, called planes, such that every plane contains three non-collinear points and through three non-collinear points there is a unique plane of <em>P</em>.</p><p>In <em>(S,L,P)</em> we define a metric which allows us to study the perspectivities between the triangles of <em>(S,L,P)</em>.</p>
url http://www.dmi.unict.it/ojs/index.php/lematematiche/article/view/228
work_keys_str_mv AT sandrorajola spaziplanarimetrici
AT mariascafatitallini spaziplanarimetrici
_version_ 1724528342320807936