ISSUES OF ENERGY EFFICIENCY AND ENERGY CONSERVATION IN THE RECLAMATION COMPLEX: HIERARCHICAL CLASSIFICATION OF MICRO HYDROPOWER PLANTS

Purpose: to build a hierarchical classification of microhydroelectric power plants, the elements of which are considered as an eventual component of the hydroreclamation system for converting the energy of water flow and solving energy efficiency and energy conservation issues in the reclamation com...

Full description

Bibliographic Details
Main Authors: O. V. Voyevodin, V. V. Slabunov, A. A. Kirilenko
Format: Article
Language:Russian
Published: Russian Scientific Research Institute of Land Improvement Problems 2020-08-01
Series:Научный журнал Российского НИИ проблем мелиорации
Subjects:
Online Access:http://www.rosniipm-sm.ru/article?n=1148
Description
Summary:Purpose: to build a hierarchical classification of microhydroelectric power plants, the elements of which are considered as an eventual component of the hydroreclamation system for converting the energy of water flow and solving energy efficiency and energy conservation issues in the reclamation complex. Materials and methods. The source materials used were the works of Russian and foreign researchers in the field of hydroelectric power plants use, as well as its design. Such methods as analysis, synthesis, logic, and classification were used as information processing and classification methods. Results and discussion. The issues of energy efficiency and energy conservation in the reclamation complex require the use of new constructive, technological approaches, and the use of profound convergence between knowledge in the energy industry and land reclamation will allow solving some of them. As a result of the search, processing and analysis of information sources in the field of the use and design of hydroelectric power plants, the absence of a general hierarchical classification of microhydroelectric power plants was stated, that causes certain difficulties in integrating a single microhydroelectric power station into the hydroreclamation system as its element. The conducted research related to the development of a hierarchical classification of microhydroelectric power plants made it possible to identify the necessary objects according to three classification criteria: the presence (absence) of head, the principle of supplying a water resource to a hydraulic unit, and the turbine design. Conclusions. The developed four-level hierarchical classification can be adopted at a first approximation, as a basis for systematizing information on microhydroelectric power stations and can be further used in the design of reclamation systems taking into account energy efficiency and energy conservation elements and can also be the object of further discussion.
ISSN:2222-1816