Lie Symmetry Analysis, Exact Solutions, and Conservation Laws for the Generalized Time-Fractional KdV-Like Equation

In this paper, the problem of constructing the Lie point symmetries group of the nonlinear partial differential equation appeared in mathematical physics known as the generalized KdV-Like equation is discussed. By using the Lie symmetry method for the generalized KdV-Like equation, the point symmetr...

Full description

Bibliographic Details
Main Authors: Maria Ihsane El Bahi, Khalid Hilal
Format: Article
Language:English
Published: Hindawi Limited 2021-01-01
Series:Journal of Function Spaces
Online Access:http://dx.doi.org/10.1155/2021/6628130
Description
Summary:In this paper, the problem of constructing the Lie point symmetries group of the nonlinear partial differential equation appeared in mathematical physics known as the generalized KdV-Like equation is discussed. By using the Lie symmetry method for the generalized KdV-Like equation, the point symmetry operators are constructed and are used to reduce the equation to another fractional ordinary differential equation based on Erdélyi-Kober differential operator. The symmetries of this equation are also used to construct the conservation Laws by applying the new conservation theorem introduced by Ibragimov. Furthermore, another type of solutions is given by means of power series method and the convergence of the solutions is provided; also, some graphics of solutions are plotted in 3D.
ISSN:2314-8896
2314-8888