Compactness determines the success of cube and octahedron self-assembly.

Nature utilizes self-assembly to fabricate structures on length scales ranging from the atomic to the macro scale. Self-assembly has emerged as a paradigm in engineering that enables the highly parallel fabrication of complex, and often three-dimensional, structures from basic building blocks. Altho...

Full description

Bibliographic Details
Main Authors: Anum Azam, Timothy G Leong, Aasiyeh M Zarafshar, David H Gracias
Format: Article
Language:English
Published: Public Library of Science (PLoS) 2009-01-01
Series:PLoS ONE
Online Access:http://europepmc.org/articles/PMC2636878?pdf=render
id doaj-c65c63cb99d74dea8ed07486ca048bad
record_format Article
spelling doaj-c65c63cb99d74dea8ed07486ca048bad2020-11-24T21:12:25ZengPublic Library of Science (PLoS)PLoS ONE1932-62032009-01-0142e445110.1371/journal.pone.0004451Compactness determines the success of cube and octahedron self-assembly.Anum AzamTimothy G LeongAasiyeh M ZarafsharDavid H GraciasNature utilizes self-assembly to fabricate structures on length scales ranging from the atomic to the macro scale. Self-assembly has emerged as a paradigm in engineering that enables the highly parallel fabrication of complex, and often three-dimensional, structures from basic building blocks. Although there have been several demonstrations of this self-assembly fabrication process, rules that govern a priori design, yield and defect tolerance remain unknown. In this paper, we have designed the first model experimental system for systematically analyzing the influence of geometry on the self-assembly of 200 and 500 microm cubes and octahedra from tethered, multi-component, two-dimensional (2D) nets. We examined the self-assembly of all eleven 2D nets that can fold into cubes and octahedra, and we observed striking correlations between the compactness of the nets and the success of the assembly. Two measures of compactness were used for the nets: the number of vertex or topological connections and the radius of gyration. The success of the self-assembly process was determined by measuring the yield and classifying the defects. Our observation of increased self-assembly success with decreased radius of gyration and increased topological connectivity resembles theoretical models that describe the role of compactness in protein folding. Because of the differences in size and scale between our system and the protein folding system, we postulate that this hypothesis may be more universal to self-assembling systems in general. Apart from being intellectually intriguing, the findings could enable the assembly of more complicated polyhedral structures (e.g. dodecahedra) by allowing a priori selection of a net that might self-assemble with high yields.http://europepmc.org/articles/PMC2636878?pdf=render
collection DOAJ
language English
format Article
sources DOAJ
author Anum Azam
Timothy G Leong
Aasiyeh M Zarafshar
David H Gracias
spellingShingle Anum Azam
Timothy G Leong
Aasiyeh M Zarafshar
David H Gracias
Compactness determines the success of cube and octahedron self-assembly.
PLoS ONE
author_facet Anum Azam
Timothy G Leong
Aasiyeh M Zarafshar
David H Gracias
author_sort Anum Azam
title Compactness determines the success of cube and octahedron self-assembly.
title_short Compactness determines the success of cube and octahedron self-assembly.
title_full Compactness determines the success of cube and octahedron self-assembly.
title_fullStr Compactness determines the success of cube and octahedron self-assembly.
title_full_unstemmed Compactness determines the success of cube and octahedron self-assembly.
title_sort compactness determines the success of cube and octahedron self-assembly.
publisher Public Library of Science (PLoS)
series PLoS ONE
issn 1932-6203
publishDate 2009-01-01
description Nature utilizes self-assembly to fabricate structures on length scales ranging from the atomic to the macro scale. Self-assembly has emerged as a paradigm in engineering that enables the highly parallel fabrication of complex, and often three-dimensional, structures from basic building blocks. Although there have been several demonstrations of this self-assembly fabrication process, rules that govern a priori design, yield and defect tolerance remain unknown. In this paper, we have designed the first model experimental system for systematically analyzing the influence of geometry on the self-assembly of 200 and 500 microm cubes and octahedra from tethered, multi-component, two-dimensional (2D) nets. We examined the self-assembly of all eleven 2D nets that can fold into cubes and octahedra, and we observed striking correlations between the compactness of the nets and the success of the assembly. Two measures of compactness were used for the nets: the number of vertex or topological connections and the radius of gyration. The success of the self-assembly process was determined by measuring the yield and classifying the defects. Our observation of increased self-assembly success with decreased radius of gyration and increased topological connectivity resembles theoretical models that describe the role of compactness in protein folding. Because of the differences in size and scale between our system and the protein folding system, we postulate that this hypothesis may be more universal to self-assembling systems in general. Apart from being intellectually intriguing, the findings could enable the assembly of more complicated polyhedral structures (e.g. dodecahedra) by allowing a priori selection of a net that might self-assemble with high yields.
url http://europepmc.org/articles/PMC2636878?pdf=render
work_keys_str_mv AT anumazam compactnessdeterminesthesuccessofcubeandoctahedronselfassembly
AT timothygleong compactnessdeterminesthesuccessofcubeandoctahedronselfassembly
AT aasiyehmzarafshar compactnessdeterminesthesuccessofcubeandoctahedronselfassembly
AT davidhgracias compactnessdeterminesthesuccessofcubeandoctahedronselfassembly
_version_ 1716751001036259328