Refining low protein modular feeds for children on low protein tube feeds with organic acidaemias

Children with inherited metabolic disorders (IMD) who are dependent on tube feeding and require a protein restriction are commonly fed by ‘modular tube feeds’ consisting of several ingredients. A longitudinal, prospective two-phase study, conducted over 18 months assessed the long-term efficacy of a...

Full description

Bibliographic Details
Main Authors: A. Daly, S. Evans, C. Ashmore, S. Chahal, S. Santra, A. MacDonald
Format: Article
Language:English
Published: Elsevier 2017-12-01
Series:Molecular Genetics and Metabolism Reports
Subjects:
Online Access:http://www.sciencedirect.com/science/article/pii/S2214426917300599
Description
Summary:Children with inherited metabolic disorders (IMD) who are dependent on tube feeding and require a protein restriction are commonly fed by ‘modular tube feeds’ consisting of several ingredients. A longitudinal, prospective two-phase study, conducted over 18 months assessed the long-term efficacy of a pre-measured protein-free composite feed. This was specifically designed to meet the non-protein nutritional requirements of children (aged over 1 year) with organic acidaemias on low protein enteral feeds and to be used as a supplement with an enteral feeding protein source. Methodology: All non-protein individual feed ingredients were replaced with one protein-free composite feed supplying fat, carbohydrate, and micronutrients. Thirteen subjects, median age 7.4y (3–15.5y), all nutritionally tube dependent (supplying nutritional intake: ≥ 90%, n = 12; 75%, n = 1), and diagnosed with organic acidaemias (Propionic acidaemia, n = 6; Vitamin B12 non-responsive methyl malonic acidaemia, n = 4; Isovaleric acidaemia, n = 2; Glutaric aciduria type1, n = 1); were studied. Nutritional intake, biochemistry and anthropometry were monitored at week −8, 0, 12, 26 and 79. Results: Energy intake remained unchanged, providing 76% of estimated energy requirements. Dietary intakes of vitamins, minerals and essential fatty acids significantly increased from week 0 to week 79, but sodium, potassium, magnesium, decosahexanoic acid and fibre did not meet suggested requirements. Plasma zinc, selenium, haemoglobin and MCV significantly improved, and growth remained satisfactory. Natural protein intake met WHO/FAO/UNU 2007 recommendations. Conclusions: A protein-free composite feed formulated to meet the non-protein nutritional requirements of children aged over 1 year improved nutritional intake, biochemical nutritional status, and simplified enteral tube feeding regimens in children with organic acidaemias.
ISSN:2214-4269