Enhanced Enzymatic Hydrolysis of Poplar after Combined Dilute NaOH and Fenton Pretreatment
Five types of pretreatment processes were investigated to confirm the enhancement of the enzymatic hydrolysis of poplar. These processes included a hot water pretreatment, a calcium oxide pretreatment, NaOH extraction at low temperature, a Fenton reaction, and a combined dilute NaOH and Fenton pretr...
Main Authors: | , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
North Carolina State University
2016-07-01
|
Series: | BioResources |
Subjects: | |
Online Access: | http://ojs.cnr.ncsu.edu/index.php/BioRes/article/view/BioRes_11_3_7522_Zhang_Enhanced_Enzymatic_Hydrolysis_Poplar |
Summary: | Five types of pretreatment processes were investigated to confirm the enhancement of the enzymatic hydrolysis of poplar. These processes included a hot water pretreatment, a calcium oxide pretreatment, NaOH extraction at low temperature, a Fenton reaction, and a combined dilute NaOH and Fenton pretreatment. The combined dilute NaOH and Fenton pretreatment was found to be the most effective pretreatment process. After enzymatic hydrolysis for 72 h, 74% of the cellulose recovery yield was obtained when the poplar substrates were pretreated with 2% NaOH at 75 °C for 3 h, followed by 20 mmol/g of H2O2 (30%) and 0.2 mmol/g of FeSO4·7H2O for a Fenton reaction period of 12 h. The cellulose recovery yield was approximately five-fold greater than that of the untreated sample directly processed by enzymatic hydrolysis. Furthermore, microscopic observations of changes in the surface structure of the pretreated residue were correlated with the enhancement of the enzymatic hydrolysis of cellulose. In conclusion, the combined dilute NaOH and Fenton pretreatment shows high potential for future application. |
---|---|
ISSN: | 1930-2126 1930-2126 |