Activity-mediated accumulation of potassium induces a switch in firing pattern and neuronal excitability type.

During normal neuronal activity, ionic concentration gradients across a neuron's membrane are often assumed to be stable. Prolonged spiking activity, however, can reduce transmembrane gradients and affect voltage dynamics. Based on mathematical modeling, we investigated the impact of neuronal a...

Full description

Bibliographic Details
Main Authors: Susana Andrea Contreras, Jan-Hendrik Schleimer, Allan T Gulledge, Susanne Schreiber
Format: Article
Language:English
Published: Public Library of Science (PLoS) 2021-05-01
Series:PLoS Computational Biology
Online Access:https://doi.org/10.1371/journal.pcbi.1008510
Description
Summary:During normal neuronal activity, ionic concentration gradients across a neuron's membrane are often assumed to be stable. Prolonged spiking activity, however, can reduce transmembrane gradients and affect voltage dynamics. Based on mathematical modeling, we investigated the impact of neuronal activity on ionic concentrations and, consequently, the dynamics of action potential generation. We find that intense spiking activity on the order of a second suffices to induce changes in ionic reversal potentials and to consistently induce a switch from a regular to an intermittent firing mode. This transition is caused by a qualitative alteration in the system's voltage dynamics, mathematically corresponding to a co-dimension-two bifurcation from a saddle-node on invariant cycle (SNIC) to a homoclinic orbit bifurcation (HOM). Our electrophysiological recordings in mouse cortical pyramidal neurons confirm the changes in action potential dynamics predicted by the models: (i) activity-dependent increases in intracellular sodium concentration directly reduce action potential amplitudes, an effect typically attributed solely to sodium channel inactivation; (ii) extracellular potassium accumulation switches action potential generation from tonic firing to intermittently interrupted output. Thus, individual neurons may respond very differently to the same input stimuli, depending on their recent patterns of activity and/or the current brain-state.
ISSN:1553-734X
1553-7358