Increased Cerebrospinal Fluid Production as a Possible Mechanism Underlying Caffeine's Protective Effect against Alzheimer's Disease
Alzheimer's disease (AD), the most common type of dementia among older people, is characterized by the accumulation of β-amyloid (Aβ) senile plaques and neurofibrillary tangles composed of hyperphosphorylated tau in the brain. Despite major advances in understanding the molecular etiology of th...
Main Authors: | , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Hindawi Limited
2011-01-01
|
Series: | International Journal of Alzheimer's Disease |
Online Access: | http://dx.doi.org/10.4061/2011/617420 |
id |
doaj-c62fad1ecb7e463c976ab73cb3ed3093 |
---|---|
record_format |
Article |
spelling |
doaj-c62fad1ecb7e463c976ab73cb3ed30932020-11-24T20:53:40ZengHindawi LimitedInternational Journal of Alzheimer's Disease2090-02522011-01-01201110.4061/2011/617420617420Increased Cerebrospinal Fluid Production as a Possible Mechanism Underlying Caffeine's Protective Effect against Alzheimer's DiseasePeter Wostyn0Debby Van Dam1Kurt Audenaert2Peter Paul De Deyn3Department of Psychiatry, PC Sint-Amandus, Reigerlostraat 10, 8730 Beernem, BelgiumLaboratory of Neurochemistry and Behavior, Institute Born-Bunge and, Department of Biomedical Sciences, University of Antwerp, Universiteitsplein 1, 2610 Antwerp, BelgiumDepartment of Psychiatry, Ghent University Hospital, De Pintelaan 185, 9000 Ghent, BelgiumLaboratory of Neurochemistry and Behavior, Institute Born-Bunge and, Department of Biomedical Sciences, University of Antwerp, Universiteitsplein 1, 2610 Antwerp, BelgiumAlzheimer's disease (AD), the most common type of dementia among older people, is characterized by the accumulation of β-amyloid (Aβ) senile plaques and neurofibrillary tangles composed of hyperphosphorylated tau in the brain. Despite major advances in understanding the molecular etiology of the disease, progress in the clinical treatment of AD patients has been extremely limited. Therefore, new and more effective therapeutic approaches are needed. Accumulating evidence from human and animal studies suggests that the long-term consumption of caffeine, the most commonly used psychoactive drug in the world, may be protective against AD. The mechanisms underlying the suggested beneficial effect of caffeine against AD remain to be elucidated. In recent studies, several potential neuroprotective effects of caffeine have been proposed. Interestingly, a recent study in rats showed that the long-term consumption of caffeine increased cerebrospinal fluid (CSF) production, associated with the increased expression of Na+-K+ ATPase and increased cerebral blood flow. Compromised function of the choroid plexus and defective CSF production and turnover, with diminished clearance of Aβ, may be one mechanism implicated in the pathogenesis of late-onset AD. If reduced CSF turnover is a risk factor for AD, then therapeutic strategies to improve CSF flow are reasonable. In this paper, we hypothesize that long-term caffeine consumption could exert protective effects against AD at least in part by facilitating CSF production, turnover, and clearance. Further, we propose a preclinical experimental design allowing evaluation of this hypothesis.http://dx.doi.org/10.4061/2011/617420 |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
Peter Wostyn Debby Van Dam Kurt Audenaert Peter Paul De Deyn |
spellingShingle |
Peter Wostyn Debby Van Dam Kurt Audenaert Peter Paul De Deyn Increased Cerebrospinal Fluid Production as a Possible Mechanism Underlying Caffeine's Protective Effect against Alzheimer's Disease International Journal of Alzheimer's Disease |
author_facet |
Peter Wostyn Debby Van Dam Kurt Audenaert Peter Paul De Deyn |
author_sort |
Peter Wostyn |
title |
Increased Cerebrospinal Fluid Production as a Possible Mechanism Underlying Caffeine's Protective Effect against Alzheimer's Disease |
title_short |
Increased Cerebrospinal Fluid Production as a Possible Mechanism Underlying Caffeine's Protective Effect against Alzheimer's Disease |
title_full |
Increased Cerebrospinal Fluid Production as a Possible Mechanism Underlying Caffeine's Protective Effect against Alzheimer's Disease |
title_fullStr |
Increased Cerebrospinal Fluid Production as a Possible Mechanism Underlying Caffeine's Protective Effect against Alzheimer's Disease |
title_full_unstemmed |
Increased Cerebrospinal Fluid Production as a Possible Mechanism Underlying Caffeine's Protective Effect against Alzheimer's Disease |
title_sort |
increased cerebrospinal fluid production as a possible mechanism underlying caffeine's protective effect against alzheimer's disease |
publisher |
Hindawi Limited |
series |
International Journal of Alzheimer's Disease |
issn |
2090-0252 |
publishDate |
2011-01-01 |
description |
Alzheimer's disease (AD), the most common type of dementia among older people, is characterized by the accumulation of β-amyloid (Aβ) senile plaques and neurofibrillary tangles composed of hyperphosphorylated tau in the brain. Despite major advances in understanding the molecular etiology of the disease, progress in the clinical treatment of AD patients has been extremely limited. Therefore, new and more effective therapeutic approaches are needed. Accumulating evidence from human and animal studies suggests that the long-term consumption of caffeine, the most commonly used psychoactive drug in the world, may be protective against AD. The mechanisms underlying the suggested beneficial effect of caffeine against AD remain to be elucidated. In recent studies, several potential neuroprotective effects of caffeine have been proposed. Interestingly, a recent study in rats showed that the long-term consumption of caffeine increased cerebrospinal fluid (CSF) production, associated with the increased expression of Na+-K+ ATPase and increased cerebral blood flow. Compromised function of the choroid plexus and defective CSF production and turnover, with diminished clearance of Aβ, may be one mechanism implicated in the pathogenesis of late-onset AD. If reduced CSF turnover is a risk factor for AD, then therapeutic strategies to improve CSF flow are reasonable. In this paper, we hypothesize that long-term caffeine consumption could exert protective effects against AD at least in part by facilitating CSF production, turnover, and clearance. Further, we propose a preclinical experimental design allowing evaluation of this hypothesis. |
url |
http://dx.doi.org/10.4061/2011/617420 |
work_keys_str_mv |
AT peterwostyn increasedcerebrospinalfluidproductionasapossiblemechanismunderlyingcaffeinesprotectiveeffectagainstalzheimersdisease AT debbyvandam increasedcerebrospinalfluidproductionasapossiblemechanismunderlyingcaffeinesprotectiveeffectagainstalzheimersdisease AT kurtaudenaert increasedcerebrospinalfluidproductionasapossiblemechanismunderlyingcaffeinesprotectiveeffectagainstalzheimersdisease AT peterpauldedeyn increasedcerebrospinalfluidproductionasapossiblemechanismunderlyingcaffeinesprotectiveeffectagainstalzheimersdisease |
_version_ |
1716796568558895104 |