Road Network Extraction from VHR Satellite Images Using Context Aware Object Feature Integration and Tensor Voting

Road networks are very important features in geospatial databases. Even though high-resolution optical satellite images have already been acquired for more than a decade, tools for automated extraction of road networks from these images are still rare. One consequence of this is the need for manual...

Full description

Bibliographic Details
Main Authors: Mehdi Maboudi, Jalal Amini, Michael Hahn, Mehdi Saati
Format: Article
Language:English
Published: MDPI AG 2016-08-01
Series:Remote Sensing
Subjects:
Online Access:http://www.mdpi.com/2072-4292/8/8/637
Description
Summary:Road networks are very important features in geospatial databases. Even though high-resolution optical satellite images have already been acquired for more than a decade, tools for automated extraction of road networks from these images are still rare. One consequence of this is the need for manual interaction which, in turn, is time and cost intensive. In this paper, a multi-stage approach is proposed which integrates structural, spectral, textural, as well as contextual information of objects to extract road networks from very high resolution satellite images. Highlights of the approach are a novel linearity index employed for the discrimination of elongated road segments from other objects and customized tensor voting which is utilized to fill missing parts of the network. Experiments are carried out with different datasets. Comparison of the achieved results with the results of seven state-of-the-art methods demonstrated the efficiency of the proposed approach.
ISSN:2072-4292