Learning Domain-Specific Features From General Features for Person Re-Identification

Person re-identification (re-id) plays a vital role in surveillance and forensics application. Since the labeled images for person re-id task is limited, the generalization ability of existed person re-id models is poor. On the other hand, images of different classes (pedestrian and non-pedestrian i...

Full description

Bibliographic Details
Main Authors: Chengqiu Dai, Junying Feng, Ruiling Zhou
Format: Article
Language:English
Published: IEEE 2020-01-01
Series:IEEE Access
Subjects:
Online Access:https://ieeexplore.ieee.org/document/9173660/
Description
Summary:Person re-identification (re-id) plays a vital role in surveillance and forensics application. Since the labeled images for person re-id task is limited, the generalization ability of existed person re-id models is poor. On the other hand, images of different classes (pedestrian and non-pedestrian images) share some general features. To this end, this paper aims to improve the performance of person re-id by designing a relearning network which can learn domain-specific features and general features simultaneously. The proposed relearning network consists of a pretrained backbone network which provides the general features, and several attention-based subnetworks that learn domain-specific features from general features of different levels. Besides, we propose a coarse-fine loss to improve the generalization of person re-id model by making full use of the massive labeled non-pedestrian images. Experimental results on the publicly available Market-1501, DukeMTMC-reID and CUHK03 pedestrian re-id datasets demonstrate the effectiveness of the proposed relearning network and coarse-fine loss.
ISSN:2169-3536