Linear stability of blowup solution of incompressible Keller–Segel–Navier–Stokes system

Abstract In this paper, we consider the linear stability of blowup solution for incompressible Keller–Segel–Navier–Stokes system in whole space R 3 $\mathbb{R}^{3}$ . More precisely, we show that, if the initial data of the three dimensional Keller–Segel–Navier–Stokes system is close to the smooth i...

Full description

Bibliographic Details
Main Authors: Yan Yan, Hengyan Li
Format: Article
Language:English
Published: SpringerOpen 2021-04-01
Series:Boundary Value Problems
Subjects:
Online Access:https://doi.org/10.1186/s13661-021-01519-4
Description
Summary:Abstract In this paper, we consider the linear stability of blowup solution for incompressible Keller–Segel–Navier–Stokes system in whole space R 3 $\mathbb{R}^{3}$ . More precisely, we show that, if the initial data of the three dimensional Keller–Segel–Navier–Stokes system is close to the smooth initial function ( 0 , 0 , u s ( 0 , x ) ) T $(0,0,\textbf{u}_{s}(0,x) )^{T}$ , then there exists a blowup solution of the three dimensional linear Keller–Segel–Navier–Stokes system satisfying the decomposition ( n ( t , x ) , c ( t , x ) , u ( t , x ) ) T = ( 0 , 0 , u s ( t , x ) ) T + O ( ε ) , ∀ ( t , x ) ∈ ( 0 , T ∗ ) × R 3 , $$ \bigl(n(t,x),c(t,x),\textbf{u}(t,x) \bigr)^{T}= \bigl(0,0, \textbf{u}_{s}(t,x) \bigr)^{T}+\mathcal{O}(\varepsilon ), \quad \forall (t,x)\in \bigl(0,T^{*}\bigr) \times \mathbb{R}^{3}, $$ in Sobolev space H s ( R 3 ) $H^{s}(\mathbb{R}^{3})$ with s = 3 2 − 5 a $s=\frac{3}{2}-5a$ and constant 0 < a ≪ 1 $0< a\ll 1$ , where T ∗ $T^{*}$ is the maximal existence time, and u s ( t , x ) $\textbf{u}_{s}(t,x)$ given in (Yan 2018) is the explicit blowup solution admitted smooth initial data for three dimensional incompressible Navier–Stokes equations.
ISSN:1687-2770