Timing cellular decision making under noise via cell-cell communication.
Many cellular processes require decision making mechanisms, which must act reliably even in the unavoidable presence of substantial amounts of noise. However, the multistable genetic switches that underlie most decision-making processes are dominated by fluctuations that can induce random jumps betw...
Main Authors: | , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Public Library of Science (PLoS)
2009-01-01
|
Series: | PLoS ONE |
Online Access: | http://europepmc.org/articles/PMC2652718?pdf=render |
id |
doaj-c6149589f29647ad852fe7b6d60e6dc5 |
---|---|
record_format |
Article |
spelling |
doaj-c6149589f29647ad852fe7b6d60e6dc52020-11-25T01:42:55ZengPublic Library of Science (PLoS)PLoS ONE1932-62032009-01-0143e487210.1371/journal.pone.0004872Timing cellular decision making under noise via cell-cell communication.Aneta KoseskaAlexey ZaikinJürgen KurthsJordi García-OjalvoMany cellular processes require decision making mechanisms, which must act reliably even in the unavoidable presence of substantial amounts of noise. However, the multistable genetic switches that underlie most decision-making processes are dominated by fluctuations that can induce random jumps between alternative cellular states. Here we show, via theoretical modeling of a population of noise-driven bistable genetic switches, that reliable timing of decision-making processes can be accomplished for large enough population sizes, as long as cells are globally coupled by chemical means. In the light of these results, we conjecture that cell proliferation, in the presence of cell-cell communication, could provide a mechanism for reliable decision making in the presence of noise, by triggering cellular transitions only when the whole cell population reaches a certain size. In other words, the summation performed by the cell population would average out the noise and reduce its detrimental impact.http://europepmc.org/articles/PMC2652718?pdf=render |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
Aneta Koseska Alexey Zaikin Jürgen Kurths Jordi García-Ojalvo |
spellingShingle |
Aneta Koseska Alexey Zaikin Jürgen Kurths Jordi García-Ojalvo Timing cellular decision making under noise via cell-cell communication. PLoS ONE |
author_facet |
Aneta Koseska Alexey Zaikin Jürgen Kurths Jordi García-Ojalvo |
author_sort |
Aneta Koseska |
title |
Timing cellular decision making under noise via cell-cell communication. |
title_short |
Timing cellular decision making under noise via cell-cell communication. |
title_full |
Timing cellular decision making under noise via cell-cell communication. |
title_fullStr |
Timing cellular decision making under noise via cell-cell communication. |
title_full_unstemmed |
Timing cellular decision making under noise via cell-cell communication. |
title_sort |
timing cellular decision making under noise via cell-cell communication. |
publisher |
Public Library of Science (PLoS) |
series |
PLoS ONE |
issn |
1932-6203 |
publishDate |
2009-01-01 |
description |
Many cellular processes require decision making mechanisms, which must act reliably even in the unavoidable presence of substantial amounts of noise. However, the multistable genetic switches that underlie most decision-making processes are dominated by fluctuations that can induce random jumps between alternative cellular states. Here we show, via theoretical modeling of a population of noise-driven bistable genetic switches, that reliable timing of decision-making processes can be accomplished for large enough population sizes, as long as cells are globally coupled by chemical means. In the light of these results, we conjecture that cell proliferation, in the presence of cell-cell communication, could provide a mechanism for reliable decision making in the presence of noise, by triggering cellular transitions only when the whole cell population reaches a certain size. In other words, the summation performed by the cell population would average out the noise and reduce its detrimental impact. |
url |
http://europepmc.org/articles/PMC2652718?pdf=render |
work_keys_str_mv |
AT anetakoseska timingcellulardecisionmakingundernoiseviacellcellcommunication AT alexeyzaikin timingcellulardecisionmakingundernoiseviacellcellcommunication AT jurgenkurths timingcellulardecisionmakingundernoiseviacellcellcommunication AT jordigarciaojalvo timingcellulardecisionmakingundernoiseviacellcellcommunication |
_version_ |
1725034301161996288 |