Asymptotic behavior of functionals of the solutions to inhomogeneous Itô stochastic differential equations with nonregular dependence on parameter

The asymptotic behavior, as $T\to \infty $, of some functionals of the form $I_{T}(t)=F_{T}(\xi _{T}(t))+{\int _{0}^{t}}g_{T}(\xi _{T}(s))\hspace{0.1667em}dW_{T}(s)$, $t\ge 0$ is studied. Here $\xi _{T}(t)$ is the solution to the time-inhomogeneous Itô stochastic differential equation \[d\xi _{T}(t)...

Full description

Bibliographic Details
Main Authors: Grigorij Kulinich, Svitlana Kushnirenko
Format: Article
Language:English
Published: VTeX 2017-09-01
Series:Modern Stochastics: Theory and Applications
Subjects:
Online Access:https://vmsta.vtex.vmt/doi/10.15559/17-VMSTA83
id doaj-c5faa7197a83406eb2b11ccde5658583
record_format Article
spelling doaj-c5faa7197a83406eb2b11ccde56585832020-11-25T01:44:09ZengVTeXModern Stochastics: Theory and Applications2351-60462351-60542017-09-014319921710.15559/17-VMSTA83Asymptotic behavior of functionals of the solutions to inhomogeneous Itô stochastic differential equations with nonregular dependence on parameterGrigorij Kulinich0Svitlana Kushnirenko1Taras Shevchenko National University of Kyiv, 64/13, Volodymyrska Street, 01601 Kyiv, UkraineTaras Shevchenko National University of Kyiv, 64/13, Volodymyrska Street, 01601 Kyiv, UkraineThe asymptotic behavior, as $T\to \infty $, of some functionals of the form $I_{T}(t)=F_{T}(\xi _{T}(t))+{\int _{0}^{t}}g_{T}(\xi _{T}(s))\hspace{0.1667em}dW_{T}(s)$, $t\ge 0$ is studied. Here $\xi _{T}(t)$ is the solution to the time-inhomogeneous Itô stochastic differential equation \[d\xi _{T}(t)=a_{T}\big(t,\xi _{T}(t)\big)\hspace{0.1667em}dt+dW_{T}(t),\hspace{1em}t\ge 0,\hspace{2.5pt}\xi _{T}(0)=x_{0},\] $T>0$ is a parameter, $a_{T}(t,x),x\in \mathbb{R}$ are measurable functions, $|a_{T}(t,x)|\le C_{T}$ for all $x\in \mathbb{R}$ and $t\ge 0$, $W_{T}(t)$ are standard Wiener processes, $F_{T}(x),x\in \mathbb{R}$ are continuous functions, $g_{T}(x),x\in \mathbb{R}$ are measurable locally bounded functions, and everything is real-valued. The explicit form of the limiting processes for $I_{T}(t)$ is established under nonregular dependence of $a_{T}(t,x)$ and $g_{T}(x)$ on the parameter T.https://vmsta.vtex.vmt/doi/10.15559/17-VMSTA83Diffusion-type processesasymptotic behavior of functionalsnonregular dependence on the parameter
collection DOAJ
language English
format Article
sources DOAJ
author Grigorij Kulinich
Svitlana Kushnirenko
spellingShingle Grigorij Kulinich
Svitlana Kushnirenko
Asymptotic behavior of functionals of the solutions to inhomogeneous Itô stochastic differential equations with nonregular dependence on parameter
Modern Stochastics: Theory and Applications
Diffusion-type processes
asymptotic behavior of functionals
nonregular dependence on the parameter
author_facet Grigorij Kulinich
Svitlana Kushnirenko
author_sort Grigorij Kulinich
title Asymptotic behavior of functionals of the solutions to inhomogeneous Itô stochastic differential equations with nonregular dependence on parameter
title_short Asymptotic behavior of functionals of the solutions to inhomogeneous Itô stochastic differential equations with nonregular dependence on parameter
title_full Asymptotic behavior of functionals of the solutions to inhomogeneous Itô stochastic differential equations with nonregular dependence on parameter
title_fullStr Asymptotic behavior of functionals of the solutions to inhomogeneous Itô stochastic differential equations with nonregular dependence on parameter
title_full_unstemmed Asymptotic behavior of functionals of the solutions to inhomogeneous Itô stochastic differential equations with nonregular dependence on parameter
title_sort asymptotic behavior of functionals of the solutions to inhomogeneous itô stochastic differential equations with nonregular dependence on parameter
publisher VTeX
series Modern Stochastics: Theory and Applications
issn 2351-6046
2351-6054
publishDate 2017-09-01
description The asymptotic behavior, as $T\to \infty $, of some functionals of the form $I_{T}(t)=F_{T}(\xi _{T}(t))+{\int _{0}^{t}}g_{T}(\xi _{T}(s))\hspace{0.1667em}dW_{T}(s)$, $t\ge 0$ is studied. Here $\xi _{T}(t)$ is the solution to the time-inhomogeneous Itô stochastic differential equation \[d\xi _{T}(t)=a_{T}\big(t,\xi _{T}(t)\big)\hspace{0.1667em}dt+dW_{T}(t),\hspace{1em}t\ge 0,\hspace{2.5pt}\xi _{T}(0)=x_{0},\] $T>0$ is a parameter, $a_{T}(t,x),x\in \mathbb{R}$ are measurable functions, $|a_{T}(t,x)|\le C_{T}$ for all $x\in \mathbb{R}$ and $t\ge 0$, $W_{T}(t)$ are standard Wiener processes, $F_{T}(x),x\in \mathbb{R}$ are continuous functions, $g_{T}(x),x\in \mathbb{R}$ are measurable locally bounded functions, and everything is real-valued. The explicit form of the limiting processes for $I_{T}(t)$ is established under nonregular dependence of $a_{T}(t,x)$ and $g_{T}(x)$ on the parameter T.
topic Diffusion-type processes
asymptotic behavior of functionals
nonregular dependence on the parameter
url https://vmsta.vtex.vmt/doi/10.15559/17-VMSTA83
work_keys_str_mv AT grigorijkulinich asymptoticbehavioroffunctionalsofthesolutionstoinhomogeneousitostochasticdifferentialequationswithnonregulardependenceonparameter
AT svitlanakushnirenko asymptoticbehavioroffunctionalsofthesolutionstoinhomogeneousitostochasticdifferentialequationswithnonregulardependenceonparameter
_version_ 1725029512923578368