GEOMETRIC AND ALGEBRAIC PROPERTIES OF FIRST-ORDER DIFFERENTIAL EQUATIONS ON SMOOTH FINITE-DIMENSIONAL REAL MANIFOLDS

We consider the geometric and algebraic properties of the first-order differential equation on smooth finite-dimensional real manifolds. An affine connection without torsion is compared with a differential flow (autonomic or non-autonomic) on a manifold, with all the original trajectories being some...

Full description

Bibliographic Details
Main Authors: Забелина Светлана Борисовна, Марченко Татьяна Андреевна, Матвеев Олег Александрович, Пинчук Ирина Александровна
Format: Article
Language:Russian
Published: Moscow Region State University Editorial Office 2019-12-01
Series:Вестник московского государственного областного университета. Серия: Физика-математика
Subjects:
Online Access:http://vestnik-mgou.ru/Articles/View/13383
id doaj-c5f3b6a7cb3d4aa09a02786839568d21
record_format Article
spelling doaj-c5f3b6a7cb3d4aa09a02786839568d212020-11-24T21:52:58ZrusMoscow Region State University Editorial OfficeВестник московского государственного областного университета. Серия: Физика-математика2310-72512019-12-01261310.18384/2310-7251-2019-2-6-13GEOMETRIC AND ALGEBRAIC PROPERTIES OF FIRST-ORDER DIFFERENTIAL EQUATIONS ON SMOOTH FINITE-DIMENSIONAL REAL MANIFOLDSЗабелина Светлана БорисовнаМарченко Татьяна АндреевнаМатвеев Олег АлександровичПинчук Ирина АлександровнаWe consider the geometric and algebraic properties of the first-order differential equation on smooth finite-dimensional real manifolds. An affine connection without torsion is compared with a differential flow (autonomic or non-autonomic) on a manifold, with all the original trajectories being some geodesic lines of this affine connection. Using differential-algebraic characteristics of affine connectivity, we study some classes of first-order equations on smooth finite-dimensional real differentiable manifolds.http://vestnik-mgou.ru/Articles/View/13383systems of ordinary differential equationssmooth manifoldsaffine connectionsuniversal algebrasquasi-groups
collection DOAJ
language Russian
format Article
sources DOAJ
author Забелина Светлана Борисовна
Марченко Татьяна Андреевна
Матвеев Олег Александрович
Пинчук Ирина Александровна
spellingShingle Забелина Светлана Борисовна
Марченко Татьяна Андреевна
Матвеев Олег Александрович
Пинчук Ирина Александровна
GEOMETRIC AND ALGEBRAIC PROPERTIES OF FIRST-ORDER DIFFERENTIAL EQUATIONS ON SMOOTH FINITE-DIMENSIONAL REAL MANIFOLDS
Вестник московского государственного областного университета. Серия: Физика-математика
systems of ordinary differential equations
smooth manifolds
affine connections
universal algebras
quasi-groups
author_facet Забелина Светлана Борисовна
Марченко Татьяна Андреевна
Матвеев Олег Александрович
Пинчук Ирина Александровна
author_sort Забелина Светлана Борисовна
title GEOMETRIC AND ALGEBRAIC PROPERTIES OF FIRST-ORDER DIFFERENTIAL EQUATIONS ON SMOOTH FINITE-DIMENSIONAL REAL MANIFOLDS
title_short GEOMETRIC AND ALGEBRAIC PROPERTIES OF FIRST-ORDER DIFFERENTIAL EQUATIONS ON SMOOTH FINITE-DIMENSIONAL REAL MANIFOLDS
title_full GEOMETRIC AND ALGEBRAIC PROPERTIES OF FIRST-ORDER DIFFERENTIAL EQUATIONS ON SMOOTH FINITE-DIMENSIONAL REAL MANIFOLDS
title_fullStr GEOMETRIC AND ALGEBRAIC PROPERTIES OF FIRST-ORDER DIFFERENTIAL EQUATIONS ON SMOOTH FINITE-DIMENSIONAL REAL MANIFOLDS
title_full_unstemmed GEOMETRIC AND ALGEBRAIC PROPERTIES OF FIRST-ORDER DIFFERENTIAL EQUATIONS ON SMOOTH FINITE-DIMENSIONAL REAL MANIFOLDS
title_sort geometric and algebraic properties of first-order differential equations on smooth finite-dimensional real manifolds
publisher Moscow Region State University Editorial Office
series Вестник московского государственного областного университета. Серия: Физика-математика
issn 2310-7251
publishDate 2019-12-01
description We consider the geometric and algebraic properties of the first-order differential equation on smooth finite-dimensional real manifolds. An affine connection without torsion is compared with a differential flow (autonomic or non-autonomic) on a manifold, with all the original trajectories being some geodesic lines of this affine connection. Using differential-algebraic characteristics of affine connectivity, we study some classes of first-order equations on smooth finite-dimensional real differentiable manifolds.
topic systems of ordinary differential equations
smooth manifolds
affine connections
universal algebras
quasi-groups
url http://vestnik-mgou.ru/Articles/View/13383
work_keys_str_mv AT zabelinasvetlanaborisovna geometricandalgebraicpropertiesoffirstorderdifferentialequationsonsmoothfinitedimensionalrealmanifolds
AT marčenkotatʹânaandreevna geometricandalgebraicpropertiesoffirstorderdifferentialequationsonsmoothfinitedimensionalrealmanifolds
AT matveevolegaleksandrovič geometricandalgebraicpropertiesoffirstorderdifferentialequationsonsmoothfinitedimensionalrealmanifolds
AT pinčukirinaaleksandrovna geometricandalgebraicpropertiesoffirstorderdifferentialequationsonsmoothfinitedimensionalrealmanifolds
_version_ 1725873763426238464