Mesopause temperature perturbations caused by infrasonic waves as a potential indicator for the detection of tsunamis and other geo-hazards

Many geo-hazards such as earthquakes, tsunamis, volcanic eruptions, severe weather, etc., produce acoustic waves with sub-audible frequency, so called infrasound. This sound propagates from the surface to the middle and upper atmosphere causing pressure and temperature perturbations. Temperature flu...

Full description

Bibliographic Details
Main Authors: M. Bittner, K. Höppner, C. Pilger, C. Schmidt
Format: Article
Language:English
Published: Copernicus Publications 2010-07-01
Series:Natural Hazards and Earth System Sciences
Online Access:http://www.nat-hazards-earth-syst-sci.net/10/1431/2010/nhess-10-1431-2010.pdf
id doaj-c5bbca08380e48afa6bcba01c0c3271c
record_format Article
spelling doaj-c5bbca08380e48afa6bcba01c0c3271c2020-11-24T22:24:38ZengCopernicus PublicationsNatural Hazards and Earth System Sciences1561-86331684-99812010-07-011071431144210.5194/nhess-10-1431-2010Mesopause temperature perturbations caused by infrasonic waves as a potential indicator for the detection of tsunamis and other geo-hazardsM. BittnerK. HöppnerC. PilgerC. SchmidtMany geo-hazards such as earthquakes, tsunamis, volcanic eruptions, severe weather, etc., produce acoustic waves with sub-audible frequency, so called infrasound. This sound propagates from the surface to the middle and upper atmosphere causing pressure and temperature perturbations. Temperature fluctuations connected with the above mentioned events usually are very weak at the surface, but the amplitude increases with height because of the exponential decrease of atmospheric pressure with increasing altitude. At the mesopause region (80–100 km height) signal amplitudes are about two to three orders of magnitude larger than on the ground. <br><br> The GRIPS (GRound-based Infrared P-branch Spectrometer) measurement system operated by the German Remote Sensing Data Center of the German Aerospace Center (DLR-DFD) derives temperatures of the mesopause region by observing hydroxyl (OH) airglow emissions in the near infrared atmospheric emission spectrum originating from a thin layer at approximately 87 km height. <br><br> The GRIPS instrument is in principle suited for the detection of infrasonic signals generated by e.g. tsunamis and other geo-hazards. This is due to the fact that the infrasound caused by such events should induce observable short-period fluctuations in the OH airglow temperatures. First results obtained during a field campaign performed at the Environmental Research Station "Schneefernerhaus", Zugspitze (47.4° N, 11.0° E) from October to December 2008 are presented regarding potential sources of meteorological and orographical origin. <br><br> An adequate distinction of the overlapping infrasonic signatures caused by different infrasound sources in the OH temperature record is needed for the ascription to the proper source. The approach presented here could form a contribution to a hazard monitoring and early warning system. http://www.nat-hazards-earth-syst-sci.net/10/1431/2010/nhess-10-1431-2010.pdf
collection DOAJ
language English
format Article
sources DOAJ
author M. Bittner
K. Höppner
C. Pilger
C. Schmidt
spellingShingle M. Bittner
K. Höppner
C. Pilger
C. Schmidt
Mesopause temperature perturbations caused by infrasonic waves as a potential indicator for the detection of tsunamis and other geo-hazards
Natural Hazards and Earth System Sciences
author_facet M. Bittner
K. Höppner
C. Pilger
C. Schmidt
author_sort M. Bittner
title Mesopause temperature perturbations caused by infrasonic waves as a potential indicator for the detection of tsunamis and other geo-hazards
title_short Mesopause temperature perturbations caused by infrasonic waves as a potential indicator for the detection of tsunamis and other geo-hazards
title_full Mesopause temperature perturbations caused by infrasonic waves as a potential indicator for the detection of tsunamis and other geo-hazards
title_fullStr Mesopause temperature perturbations caused by infrasonic waves as a potential indicator for the detection of tsunamis and other geo-hazards
title_full_unstemmed Mesopause temperature perturbations caused by infrasonic waves as a potential indicator for the detection of tsunamis and other geo-hazards
title_sort mesopause temperature perturbations caused by infrasonic waves as a potential indicator for the detection of tsunamis and other geo-hazards
publisher Copernicus Publications
series Natural Hazards and Earth System Sciences
issn 1561-8633
1684-9981
publishDate 2010-07-01
description Many geo-hazards such as earthquakes, tsunamis, volcanic eruptions, severe weather, etc., produce acoustic waves with sub-audible frequency, so called infrasound. This sound propagates from the surface to the middle and upper atmosphere causing pressure and temperature perturbations. Temperature fluctuations connected with the above mentioned events usually are very weak at the surface, but the amplitude increases with height because of the exponential decrease of atmospheric pressure with increasing altitude. At the mesopause region (80–100 km height) signal amplitudes are about two to three orders of magnitude larger than on the ground. <br><br> The GRIPS (GRound-based Infrared P-branch Spectrometer) measurement system operated by the German Remote Sensing Data Center of the German Aerospace Center (DLR-DFD) derives temperatures of the mesopause region by observing hydroxyl (OH) airglow emissions in the near infrared atmospheric emission spectrum originating from a thin layer at approximately 87 km height. <br><br> The GRIPS instrument is in principle suited for the detection of infrasonic signals generated by e.g. tsunamis and other geo-hazards. This is due to the fact that the infrasound caused by such events should induce observable short-period fluctuations in the OH airglow temperatures. First results obtained during a field campaign performed at the Environmental Research Station "Schneefernerhaus", Zugspitze (47.4° N, 11.0° E) from October to December 2008 are presented regarding potential sources of meteorological and orographical origin. <br><br> An adequate distinction of the overlapping infrasonic signatures caused by different infrasound sources in the OH temperature record is needed for the ascription to the proper source. The approach presented here could form a contribution to a hazard monitoring and early warning system.
url http://www.nat-hazards-earth-syst-sci.net/10/1431/2010/nhess-10-1431-2010.pdf
work_keys_str_mv AT mbittner mesopausetemperatureperturbationscausedbyinfrasonicwavesasapotentialindicatorforthedetectionoftsunamisandothergeohazards
AT khoppner mesopausetemperatureperturbationscausedbyinfrasonicwavesasapotentialindicatorforthedetectionoftsunamisandothergeohazards
AT cpilger mesopausetemperatureperturbationscausedbyinfrasonicwavesasapotentialindicatorforthedetectionoftsunamisandothergeohazards
AT cschmidt mesopausetemperatureperturbationscausedbyinfrasonicwavesasapotentialindicatorforthedetectionoftsunamisandothergeohazards
_version_ 1725760395074863104