A Novel Weak Signal Detection Method of Electromagnetic LWD Based on a Duffing Oscillator
The logging while drilling (LWD) electromagnetic weak signal detection model of a Duffing oscillator based on a one-dimensional nonlinear oscillator is established. The influences of noise on Duffing oscillator dynamic behavior of periodic driving force are discussed and evaluate the oscillator weak...
Main Authors: | , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Hindawi Limited
2018-01-01
|
Series: | Journal of Sensors |
Online Access: | http://dx.doi.org/10.1155/2018/5847081 |
Summary: | The logging while drilling (LWD) electromagnetic weak signal detection model of a Duffing oscillator based on a one-dimensional nonlinear oscillator is established. The influences of noise on Duffing oscillator dynamic behavior of periodic driving force are discussed and evaluate the oscillator weak signal detection mechanism based on a phase change trajectory diagram. The improved Duffing oscillator is designed and applied to detect the electromagnetic logging signal resistivity at the drill bit using the time-scale transformation method. The simulation results show that the nonlinear dynamic characteristics of the Duffing oscillator are very noticeable, the Duffing circuit is very sensitive to detect the tested signal, and it has a reasonable level of immunity to noise. The smaller the amplitude of the tested signal, the more sensitive the circuit is to the signal, the better the antinoise system performance, and the lower the signal-to-noise ratio (SNR). |
---|---|
ISSN: | 1687-725X 1687-7268 |