On the perturbation analysis of the maximal solution for the matrix equation X−∑i=1mAi∗X−1Ai+∑j=1nBj∗X−1Bj=I $$ X-\overset{m}{\sum \limits_{i=1}}{A}_i^{\ast}\kern0.1em {X}^{-1}\kern0.1em {A}_i+\sum \limits_{j=1}^n{B}_j^{\ast}\kern0.1em {X}^{-1}\kern0.1em {B}_j=I $$
Abstract In this paper, we study the perturbation estimate of the maximal solution for the matrix equation X−∑i=1mAi∗X−1Ai+∑j=1nBj∗X−1Bj=I $$ X-\overset{m}{\sum \limits_{i=1}}{A}_i^{\ast}\kern0.1em {X}^{-1}\kern0.1em {A}_i+\sum \limits_{j=1}^n{B}_j^{\ast}\kern0.1em {X}^{-1}\kern0.1em {B}_j=I $$ usin...
Main Authors: | Mohamed A. Ramadan, Naglaa M. El–Shazly |
---|---|
Format: | Article |
Language: | English |
Published: |
SpringerOpen
2020-01-01
|
Series: | Journal of the Egyptian Mathematical Society |
Subjects: | |
Online Access: | https://doi.org/10.1186/s42787-019-0052-7 |
Similar Items
-
Perturbation Analysis for the Matrix Equation X−∑i=1mAi∗XAi+∑j=1nBj∗XBj=I
by: Xue-Feng Duan, et al.
Published: (2012-01-01) -
On the Davenport constant of a two-dimensional box $\left[\kern-0.15em\left[ { - 1,1} \right]\kern-0.15em\right] \times \left[\kern-0.15em\left[ { - m,n} \right]\kern-0.15em\right]$
by: Guixin Deng
Published: (2021-11-01) -
Structure and dielectric properties of solid solutions Bi7Ti4+xWxNb1−2x−0.1V0.1O21 (x=0.1−0.4)
by: S. V. Zubkov
Published: (2020-02-01) -
Superconductivity in (Zr1-xTax)Nz (0.1≦x≦0.9)
by: Che-ming Hsu, et al.
Published: (2009) -
Preparation, structure and properties of Bi2+x-zSr2-x+zCuOy (x=0-0.1;z=0-0.1)compounds
by: Chih-Hsien Wu, et al.
Published: (2005)