On the perturbation analysis of the maximal solution for the matrix equation X−∑i=1mAi∗X−1Ai+∑j=1nBj∗X−1Bj=I $$ X-\overset{m}{\sum \limits_{i=1}}{A}_i^{\ast}\kern0.1em {X}^{-1}\kern0.1em {A}_i+\sum \limits_{j=1}^n{B}_j^{\ast}\kern0.1em {X}^{-1}\kern0.1em {B}_j=I $$

Abstract In this paper, we study the perturbation estimate of the maximal solution for the matrix equation X−∑i=1mAi∗X−1Ai+∑j=1nBj∗X−1Bj=I $$ X-\overset{m}{\sum \limits_{i=1}}{A}_i^{\ast}\kern0.1em {X}^{-1}\kern0.1em {A}_i+\sum \limits_{j=1}^n{B}_j^{\ast}\kern0.1em {X}^{-1}\kern0.1em {B}_j=I $$ usin...

Full description

Bibliographic Details
Main Authors: Mohamed A. Ramadan, Naglaa M. El–Shazly
Format: Article
Language:English
Published: SpringerOpen 2020-01-01
Series:Journal of the Egyptian Mathematical Society
Subjects:
Online Access:https://doi.org/10.1186/s42787-019-0052-7
id doaj-c57675eacbdd4c32b6d1821eb4d1a9ed
record_format Article
spelling doaj-c57675eacbdd4c32b6d1821eb4d1a9ed2021-01-17T12:24:56ZengSpringerOpenJournal of the Egyptian Mathematical Society2090-91282020-01-0128111310.1186/s42787-019-0052-7On the perturbation analysis of the maximal solution for the matrix equation X−∑i=1mAi∗X−1Ai+∑j=1nBj∗X−1Bj=I $$ X-\overset{m}{\sum \limits_{i=1}}{A}_i^{\ast}\kern0.1em {X}^{-1}\kern0.1em {A}_i+\sum \limits_{j=1}^n{B}_j^{\ast}\kern0.1em {X}^{-1}\kern0.1em {B}_j=I $$Mohamed A. Ramadan0Naglaa M. El–Shazly1Department of Mathematics and Computer Science, Faculty of Science, Menoufia UniversityDepartment of Mathematics and Computer Science, Faculty of Science, Menoufia UniversityAbstract In this paper, we study the perturbation estimate of the maximal solution for the matrix equation X−∑i=1mAi∗X−1Ai+∑j=1nBj∗X−1Bj=I $$ X-\overset{m}{\sum \limits_{i=1}}{A}_i^{\ast}\kern0.1em {X}^{-1}\kern0.1em {A}_i+\sum \limits_{j=1}^n{B}_j^{\ast}\kern0.1em {X}^{-1}\kern0.1em {B}_j=I $$ using the differentiation of matrices. We derive the differential bound for this maximal solution. Moreover, we present a perturbation estimate and an error bound for this maximal solution. Finally, a numerical example is given to clarify the reliability of our obtained results.https://doi.org/10.1186/s42787-019-0052-7Nonlinear matrix equationMaximal positive solutionIterationMatrix differentiationPerturbation bound
collection DOAJ
language English
format Article
sources DOAJ
author Mohamed A. Ramadan
Naglaa M. El–Shazly
spellingShingle Mohamed A. Ramadan
Naglaa M. El–Shazly
On the perturbation analysis of the maximal solution for the matrix equation X−∑i=1mAi∗X−1Ai+∑j=1nBj∗X−1Bj=I $$ X-\overset{m}{\sum \limits_{i=1}}{A}_i^{\ast}\kern0.1em {X}^{-1}\kern0.1em {A}_i+\sum \limits_{j=1}^n{B}_j^{\ast}\kern0.1em {X}^{-1}\kern0.1em {B}_j=I $$
Journal of the Egyptian Mathematical Society
Nonlinear matrix equation
Maximal positive solution
Iteration
Matrix differentiation
Perturbation bound
author_facet Mohamed A. Ramadan
Naglaa M. El–Shazly
author_sort Mohamed A. Ramadan
title On the perturbation analysis of the maximal solution for the matrix equation X−∑i=1mAi∗X−1Ai+∑j=1nBj∗X−1Bj=I $$ X-\overset{m}{\sum \limits_{i=1}}{A}_i^{\ast}\kern0.1em {X}^{-1}\kern0.1em {A}_i+\sum \limits_{j=1}^n{B}_j^{\ast}\kern0.1em {X}^{-1}\kern0.1em {B}_j=I $$
title_short On the perturbation analysis of the maximal solution for the matrix equation X−∑i=1mAi∗X−1Ai+∑j=1nBj∗X−1Bj=I $$ X-\overset{m}{\sum \limits_{i=1}}{A}_i^{\ast}\kern0.1em {X}^{-1}\kern0.1em {A}_i+\sum \limits_{j=1}^n{B}_j^{\ast}\kern0.1em {X}^{-1}\kern0.1em {B}_j=I $$
title_full On the perturbation analysis of the maximal solution for the matrix equation X−∑i=1mAi∗X−1Ai+∑j=1nBj∗X−1Bj=I $$ X-\overset{m}{\sum \limits_{i=1}}{A}_i^{\ast}\kern0.1em {X}^{-1}\kern0.1em {A}_i+\sum \limits_{j=1}^n{B}_j^{\ast}\kern0.1em {X}^{-1}\kern0.1em {B}_j=I $$
title_fullStr On the perturbation analysis of the maximal solution for the matrix equation X−∑i=1mAi∗X−1Ai+∑j=1nBj∗X−1Bj=I $$ X-\overset{m}{\sum \limits_{i=1}}{A}_i^{\ast}\kern0.1em {X}^{-1}\kern0.1em {A}_i+\sum \limits_{j=1}^n{B}_j^{\ast}\kern0.1em {X}^{-1}\kern0.1em {B}_j=I $$
title_full_unstemmed On the perturbation analysis of the maximal solution for the matrix equation X−∑i=1mAi∗X−1Ai+∑j=1nBj∗X−1Bj=I $$ X-\overset{m}{\sum \limits_{i=1}}{A}_i^{\ast}\kern0.1em {X}^{-1}\kern0.1em {A}_i+\sum \limits_{j=1}^n{B}_j^{\ast}\kern0.1em {X}^{-1}\kern0.1em {B}_j=I $$
title_sort on the perturbation analysis of the maximal solution for the matrix equation x−∑i=1mai∗x−1ai+∑j=1nbj∗x−1bj=i $$ x-\overset{m}{\sum \limits_{i=1}}{a}_i^{\ast}\kern0.1em {x}^{-1}\kern0.1em {a}_i+\sum \limits_{j=1}^n{b}_j^{\ast}\kern0.1em {x}^{-1}\kern0.1em {b}_j=i $$
publisher SpringerOpen
series Journal of the Egyptian Mathematical Society
issn 2090-9128
publishDate 2020-01-01
description Abstract In this paper, we study the perturbation estimate of the maximal solution for the matrix equation X−∑i=1mAi∗X−1Ai+∑j=1nBj∗X−1Bj=I $$ X-\overset{m}{\sum \limits_{i=1}}{A}_i^{\ast}\kern0.1em {X}^{-1}\kern0.1em {A}_i+\sum \limits_{j=1}^n{B}_j^{\ast}\kern0.1em {X}^{-1}\kern0.1em {B}_j=I $$ using the differentiation of matrices. We derive the differential bound for this maximal solution. Moreover, we present a perturbation estimate and an error bound for this maximal solution. Finally, a numerical example is given to clarify the reliability of our obtained results.
topic Nonlinear matrix equation
Maximal positive solution
Iteration
Matrix differentiation
Perturbation bound
url https://doi.org/10.1186/s42787-019-0052-7
work_keys_str_mv AT mohamedaramadan ontheperturbationanalysisofthemaximalsolutionforthematrixequationxi1maix1aij1nbjx1bjixoversetmsumlimitsi1aiastkern01emx1kern01emaisumlimitsj1nbjastkern01emx1kern01embji
AT naglaamelshazly ontheperturbationanalysisofthemaximalsolutionforthematrixequationxi1maix1aij1nbjx1bjixoversetmsumlimitsi1aiastkern01emx1kern01emaisumlimitsj1nbjastkern01emx1kern01embji
_version_ 1724334921415131136