Design Optimization of Composite Laminated Tube Based on Improved Niching Evolutionary Algorithm

A minimum weight design is developed for a composite laminated tube considering the number of plies as one of the design variables. The objective function is found to be complex, and more than one optimal design point may exist with different numbers of plies. Existing methods based on evolutionary...

Full description

Bibliographic Details
Main Authors: Sen Ma, Qilin Zhao, Darong Pan
Format: Article
Language:English
Published: Hindawi Limited 2017-01-01
Series:Mathematical Problems in Engineering
Online Access:http://dx.doi.org/10.1155/2017/3141534
Description
Summary:A minimum weight design is developed for a composite laminated tube considering the number of plies as one of the design variables. The objective function is found to be complex, and more than one optimal design point may exist with different numbers of plies. Existing methods based on evolutionary algorithms tend to become trapped around a local optimum and can find no more than one optimal result per calculation. Aiming at the characteristics of the objective function, an improved evolutionary algorithm (INDE for short) is established based on niching technology. The formula for calculating the distance between individuals in the niching technology is improved to satisfy the minimum weight design for the composite laminated tube. As a result, the improved niching evolutionary algorithm offers better global search ability and can find more than one optimal result per calculation for different numbers of plies.
ISSN:1024-123X
1563-5147