Extracting Robust Biomarkers From Multichannel EEG Time Series Using Nonlinear Dimensionality Reduction Applied to Ordinal Pattern Statistics and Spectral Quantities

In this study, ordinal pattern analysis and classical frequency-based EEG analysis methods are used to differentiate between EEGs of different age groups as well as individuals. As characteristic features, functional connectivity as well as single-channel measures in both the time and frequency doma...

Full description

Bibliographic Details
Main Authors: Inga Kottlarz, Sebastian Berg, Diana Toscano-Tejeida, Iris Steinmann, Mathias Bähr, Stefan Luther, Melanie Wilke, Ulrich Parlitz, Alexander Schlemmer
Format: Article
Language:English
Published: Frontiers Media S.A. 2021-02-01
Series:Frontiers in Physiology
Subjects:
Online Access:https://www.frontiersin.org/articles/10.3389/fphys.2020.614565/full
id doaj-c54a25756d8c4f7b9db0435265318854
record_format Article
spelling doaj-c54a25756d8c4f7b9db04352653188542021-02-01T04:59:52ZengFrontiers Media S.A.Frontiers in Physiology1664-042X2021-02-011110.3389/fphys.2020.614565614565Extracting Robust Biomarkers From Multichannel EEG Time Series Using Nonlinear Dimensionality Reduction Applied to Ordinal Pattern Statistics and Spectral QuantitiesInga Kottlarz0Inga Kottlarz1Sebastian Berg2Diana Toscano-Tejeida3Iris Steinmann4Mathias Bähr5Stefan Luther6Stefan Luther7Stefan Luther8Melanie Wilke9Melanie Wilke10Ulrich Parlitz11Ulrich Parlitz12Ulrich Parlitz13Alexander Schlemmer14Alexander Schlemmer15Max Planck Institute for Dynamics and Self-Organization, Göttingen, GermanyInstitute for the Dynamics of Complex Systems, Georg-August-Universität Göttingen, Göttingen, GermanyMax Planck Institute for Dynamics and Self-Organization, Göttingen, GermanyDepartment of Cognitive Neurology, University Medical Center Göttingen, Göttingen, GermanyDepartment of Cognitive Neurology, University Medical Center Göttingen, Göttingen, GermanyDepartment of Neurology, University Medical Center Göttingen, Göttingen, GermanyMax Planck Institute for Dynamics and Self-Organization, Göttingen, GermanyInstitute of Pharmacology and Toxicology, University Medical Center Göttingen, Göttingen, GermanyGerman Center for Cardiovascular Research (DZHK), Partner Site Göttingen, Göttingen, GermanyDepartment of Cognitive Neurology, University Medical Center Göttingen, Göttingen, GermanyGerman Primate Center, Leibniz Institute for Primate Research, Göttingen, GermanyMax Planck Institute for Dynamics and Self-Organization, Göttingen, GermanyInstitute for the Dynamics of Complex Systems, Georg-August-Universität Göttingen, Göttingen, GermanyGerman Center for Cardiovascular Research (DZHK), Partner Site Göttingen, Göttingen, GermanyMax Planck Institute for Dynamics and Self-Organization, Göttingen, GermanyGerman Center for Cardiovascular Research (DZHK), Partner Site Göttingen, Göttingen, GermanyIn this study, ordinal pattern analysis and classical frequency-based EEG analysis methods are used to differentiate between EEGs of different age groups as well as individuals. As characteristic features, functional connectivity as well as single-channel measures in both the time and frequency domain are considered. We compare the separation power of each feature set after nonlinear dimensionality reduction using t-distributed stochastic neighbor embedding and demonstrate that ordinal pattern-based measures yield results comparable to frequency-based measures applied to preprocessed data, and outperform them if applied to raw data. Our analysis yields no significant differences in performance between single-channel features and functional connectivity features regarding the question of age group separation.https://www.frontiersin.org/articles/10.3389/fphys.2020.614565/fullEEG - Electroencephalogramt-SNE (t-distributed stochastic neighbor embedding)ordinal pattern statisticsnonlinear dimensionality reductionbiomarkersfunctional connectivity
collection DOAJ
language English
format Article
sources DOAJ
author Inga Kottlarz
Inga Kottlarz
Sebastian Berg
Diana Toscano-Tejeida
Iris Steinmann
Mathias Bähr
Stefan Luther
Stefan Luther
Stefan Luther
Melanie Wilke
Melanie Wilke
Ulrich Parlitz
Ulrich Parlitz
Ulrich Parlitz
Alexander Schlemmer
Alexander Schlemmer
spellingShingle Inga Kottlarz
Inga Kottlarz
Sebastian Berg
Diana Toscano-Tejeida
Iris Steinmann
Mathias Bähr
Stefan Luther
Stefan Luther
Stefan Luther
Melanie Wilke
Melanie Wilke
Ulrich Parlitz
Ulrich Parlitz
Ulrich Parlitz
Alexander Schlemmer
Alexander Schlemmer
Extracting Robust Biomarkers From Multichannel EEG Time Series Using Nonlinear Dimensionality Reduction Applied to Ordinal Pattern Statistics and Spectral Quantities
Frontiers in Physiology
EEG - Electroencephalogram
t-SNE (t-distributed stochastic neighbor embedding)
ordinal pattern statistics
nonlinear dimensionality reduction
biomarkers
functional connectivity
author_facet Inga Kottlarz
Inga Kottlarz
Sebastian Berg
Diana Toscano-Tejeida
Iris Steinmann
Mathias Bähr
Stefan Luther
Stefan Luther
Stefan Luther
Melanie Wilke
Melanie Wilke
Ulrich Parlitz
Ulrich Parlitz
Ulrich Parlitz
Alexander Schlemmer
Alexander Schlemmer
author_sort Inga Kottlarz
title Extracting Robust Biomarkers From Multichannel EEG Time Series Using Nonlinear Dimensionality Reduction Applied to Ordinal Pattern Statistics and Spectral Quantities
title_short Extracting Robust Biomarkers From Multichannel EEG Time Series Using Nonlinear Dimensionality Reduction Applied to Ordinal Pattern Statistics and Spectral Quantities
title_full Extracting Robust Biomarkers From Multichannel EEG Time Series Using Nonlinear Dimensionality Reduction Applied to Ordinal Pattern Statistics and Spectral Quantities
title_fullStr Extracting Robust Biomarkers From Multichannel EEG Time Series Using Nonlinear Dimensionality Reduction Applied to Ordinal Pattern Statistics and Spectral Quantities
title_full_unstemmed Extracting Robust Biomarkers From Multichannel EEG Time Series Using Nonlinear Dimensionality Reduction Applied to Ordinal Pattern Statistics and Spectral Quantities
title_sort extracting robust biomarkers from multichannel eeg time series using nonlinear dimensionality reduction applied to ordinal pattern statistics and spectral quantities
publisher Frontiers Media S.A.
series Frontiers in Physiology
issn 1664-042X
publishDate 2021-02-01
description In this study, ordinal pattern analysis and classical frequency-based EEG analysis methods are used to differentiate between EEGs of different age groups as well as individuals. As characteristic features, functional connectivity as well as single-channel measures in both the time and frequency domain are considered. We compare the separation power of each feature set after nonlinear dimensionality reduction using t-distributed stochastic neighbor embedding and demonstrate that ordinal pattern-based measures yield results comparable to frequency-based measures applied to preprocessed data, and outperform them if applied to raw data. Our analysis yields no significant differences in performance between single-channel features and functional connectivity features regarding the question of age group separation.
topic EEG - Electroencephalogram
t-SNE (t-distributed stochastic neighbor embedding)
ordinal pattern statistics
nonlinear dimensionality reduction
biomarkers
functional connectivity
url https://www.frontiersin.org/articles/10.3389/fphys.2020.614565/full
work_keys_str_mv AT ingakottlarz extractingrobustbiomarkersfrommultichanneleegtimeseriesusingnonlineardimensionalityreductionappliedtoordinalpatternstatisticsandspectralquantities
AT ingakottlarz extractingrobustbiomarkersfrommultichanneleegtimeseriesusingnonlineardimensionalityreductionappliedtoordinalpatternstatisticsandspectralquantities
AT sebastianberg extractingrobustbiomarkersfrommultichanneleegtimeseriesusingnonlineardimensionalityreductionappliedtoordinalpatternstatisticsandspectralquantities
AT dianatoscanotejeida extractingrobustbiomarkersfrommultichanneleegtimeseriesusingnonlineardimensionalityreductionappliedtoordinalpatternstatisticsandspectralquantities
AT irissteinmann extractingrobustbiomarkersfrommultichanneleegtimeseriesusingnonlineardimensionalityreductionappliedtoordinalpatternstatisticsandspectralquantities
AT mathiasbahr extractingrobustbiomarkersfrommultichanneleegtimeseriesusingnonlineardimensionalityreductionappliedtoordinalpatternstatisticsandspectralquantities
AT stefanluther extractingrobustbiomarkersfrommultichanneleegtimeseriesusingnonlineardimensionalityreductionappliedtoordinalpatternstatisticsandspectralquantities
AT stefanluther extractingrobustbiomarkersfrommultichanneleegtimeseriesusingnonlineardimensionalityreductionappliedtoordinalpatternstatisticsandspectralquantities
AT stefanluther extractingrobustbiomarkersfrommultichanneleegtimeseriesusingnonlineardimensionalityreductionappliedtoordinalpatternstatisticsandspectralquantities
AT melaniewilke extractingrobustbiomarkersfrommultichanneleegtimeseriesusingnonlineardimensionalityreductionappliedtoordinalpatternstatisticsandspectralquantities
AT melaniewilke extractingrobustbiomarkersfrommultichanneleegtimeseriesusingnonlineardimensionalityreductionappliedtoordinalpatternstatisticsandspectralquantities
AT ulrichparlitz extractingrobustbiomarkersfrommultichanneleegtimeseriesusingnonlineardimensionalityreductionappliedtoordinalpatternstatisticsandspectralquantities
AT ulrichparlitz extractingrobustbiomarkersfrommultichanneleegtimeseriesusingnonlineardimensionalityreductionappliedtoordinalpatternstatisticsandspectralquantities
AT ulrichparlitz extractingrobustbiomarkersfrommultichanneleegtimeseriesusingnonlineardimensionalityreductionappliedtoordinalpatternstatisticsandspectralquantities
AT alexanderschlemmer extractingrobustbiomarkersfrommultichanneleegtimeseriesusingnonlineardimensionalityreductionappliedtoordinalpatternstatisticsandspectralquantities
AT alexanderschlemmer extractingrobustbiomarkersfrommultichanneleegtimeseriesusingnonlineardimensionalityreductionappliedtoordinalpatternstatisticsandspectralquantities
_version_ 1724315796624113664