Performance Evaluation of MDO Architectures within a Variable Complexity Problem

Though quite a number of multidisciplinary design optimization (MDO) architectures have been proposed for the optimal design of large-scale multidisciplinary systems, how their performance changes with the complexity of MDO problem varied is not well studied. In order to solve this problem, this pap...

Full description

Bibliographic Details
Main Authors: Daiyu Zhang, Baowei Song, Peng Wang, Yanru He
Format: Article
Language:English
Published: Hindawi Limited 2017-01-01
Series:Mathematical Problems in Engineering
Online Access:http://dx.doi.org/10.1155/2017/2759762
Description
Summary:Though quite a number of multidisciplinary design optimization (MDO) architectures have been proposed for the optimal design of large-scale multidisciplinary systems, how their performance changes with the complexity of MDO problem varied is not well studied. In order to solve this problem, this paper presents a variable complexity problem which allows people to obtain a MDO problem with arbitrary complexity by specifying its changeable parameters, such as the number of disciplines and the numbers of design variables. Then four investigations are performed to evaluate how the performance of different MDO architectures changes with the number of disciplines, global variables, local variables, and coupling variables varied, respectively. Finally, the results supply guidance for the selection of MDO architectures in solving practical engineering problems with different complexity.
ISSN:1024-123X
1563-5147