High-Throughput Sequencing-The Key to Rapid Biodiversity Assessment of Marine Metazoa?

The applications of traditional morphological and molecular methods for species identification are greatly restricted by processing speed and on a regional or greater scale are generally considered unfeasible. In this context, high-throughput sequencing, or metagenetics, has been proposed as an effi...

Full description

Bibliographic Details
Main Authors: Inga Mohrbeck, Michael J Raupach, Pedro Martínez Arbizu, Thomas Knebelsberger, Silke Laakmann
Format: Article
Language:English
Published: Public Library of Science (PLoS) 2015-01-01
Series:PLoS ONE
Online Access:http://europepmc.org/articles/PMC4610693?pdf=render
id doaj-c52a97f6c4d3411283ae9032d5df6c40
record_format Article
spelling doaj-c52a97f6c4d3411283ae9032d5df6c402020-11-25T00:48:33ZengPublic Library of Science (PLoS)PLoS ONE1932-62032015-01-011010e014034210.1371/journal.pone.0140342High-Throughput Sequencing-The Key to Rapid Biodiversity Assessment of Marine Metazoa?Inga MohrbeckMichael J RaupachPedro Martínez ArbizuThomas KnebelsbergerSilke LaakmannThe applications of traditional morphological and molecular methods for species identification are greatly restricted by processing speed and on a regional or greater scale are generally considered unfeasible. In this context, high-throughput sequencing, or metagenetics, has been proposed as an efficient tool to document biodiversity. Here we evaluated the effectiveness of 454 pyrosequencing in marine metazoan community analysis using the 18S rDNA: V1-V2 region. Multiplex pyrosequencing of the V1-V2 region was used to analyze two pooled samples of DNA, one comprising 118 and the other 37 morphologically identified species, and one natural sample taken directly from a North Sea zooplankton community. A DNA reference library comprising all species represented in the pooled samples was created by Sanger sequencing, and this was then used to determine the optimal similarity threshold for species delineation. The optimal threshold was found at 99% species similarity, with 85% identification success. Pyrosequencing was able to identify between fewer species: 67% and 78% of the species in the two pooled samples. Also, a large number of sequences for three species that were not included in the pooled samples were amplified by pyrosequencing, suggesting preferential amplification of some genotypes and the sensitivity of this approach to even low levels of contamination. Conversely, metagenetic analysis of the natural zooplankton sample identified many more species (particularly gelatinous zooplankton and meroplankton) than morphological analysis of a formalin-fixed sample from the same sampling site, suggesting an increased level of taxonomic resolution with pyrosequencing. The study demonstrated that, based on the V1-V2 region, 454 sequencing does not provide accurate species differentiation and reliable taxonomic classification, as it is required in most biodiversity monitoring. The analysis of artificially prepared samples indicated that species detection in pyrosequencing datasets is complicated by potential PCR-based biases and that the V1-V2 marker is poorly resolved for some taxa.http://europepmc.org/articles/PMC4610693?pdf=render
collection DOAJ
language English
format Article
sources DOAJ
author Inga Mohrbeck
Michael J Raupach
Pedro Martínez Arbizu
Thomas Knebelsberger
Silke Laakmann
spellingShingle Inga Mohrbeck
Michael J Raupach
Pedro Martínez Arbizu
Thomas Knebelsberger
Silke Laakmann
High-Throughput Sequencing-The Key to Rapid Biodiversity Assessment of Marine Metazoa?
PLoS ONE
author_facet Inga Mohrbeck
Michael J Raupach
Pedro Martínez Arbizu
Thomas Knebelsberger
Silke Laakmann
author_sort Inga Mohrbeck
title High-Throughput Sequencing-The Key to Rapid Biodiversity Assessment of Marine Metazoa?
title_short High-Throughput Sequencing-The Key to Rapid Biodiversity Assessment of Marine Metazoa?
title_full High-Throughput Sequencing-The Key to Rapid Biodiversity Assessment of Marine Metazoa?
title_fullStr High-Throughput Sequencing-The Key to Rapid Biodiversity Assessment of Marine Metazoa?
title_full_unstemmed High-Throughput Sequencing-The Key to Rapid Biodiversity Assessment of Marine Metazoa?
title_sort high-throughput sequencing-the key to rapid biodiversity assessment of marine metazoa?
publisher Public Library of Science (PLoS)
series PLoS ONE
issn 1932-6203
publishDate 2015-01-01
description The applications of traditional morphological and molecular methods for species identification are greatly restricted by processing speed and on a regional or greater scale are generally considered unfeasible. In this context, high-throughput sequencing, or metagenetics, has been proposed as an efficient tool to document biodiversity. Here we evaluated the effectiveness of 454 pyrosequencing in marine metazoan community analysis using the 18S rDNA: V1-V2 region. Multiplex pyrosequencing of the V1-V2 region was used to analyze two pooled samples of DNA, one comprising 118 and the other 37 morphologically identified species, and one natural sample taken directly from a North Sea zooplankton community. A DNA reference library comprising all species represented in the pooled samples was created by Sanger sequencing, and this was then used to determine the optimal similarity threshold for species delineation. The optimal threshold was found at 99% species similarity, with 85% identification success. Pyrosequencing was able to identify between fewer species: 67% and 78% of the species in the two pooled samples. Also, a large number of sequences for three species that were not included in the pooled samples were amplified by pyrosequencing, suggesting preferential amplification of some genotypes and the sensitivity of this approach to even low levels of contamination. Conversely, metagenetic analysis of the natural zooplankton sample identified many more species (particularly gelatinous zooplankton and meroplankton) than morphological analysis of a formalin-fixed sample from the same sampling site, suggesting an increased level of taxonomic resolution with pyrosequencing. The study demonstrated that, based on the V1-V2 region, 454 sequencing does not provide accurate species differentiation and reliable taxonomic classification, as it is required in most biodiversity monitoring. The analysis of artificially prepared samples indicated that species detection in pyrosequencing datasets is complicated by potential PCR-based biases and that the V1-V2 marker is poorly resolved for some taxa.
url http://europepmc.org/articles/PMC4610693?pdf=render
work_keys_str_mv AT ingamohrbeck highthroughputsequencingthekeytorapidbiodiversityassessmentofmarinemetazoa
AT michaeljraupach highthroughputsequencingthekeytorapidbiodiversityassessmentofmarinemetazoa
AT pedromartinezarbizu highthroughputsequencingthekeytorapidbiodiversityassessmentofmarinemetazoa
AT thomasknebelsberger highthroughputsequencingthekeytorapidbiodiversityassessmentofmarinemetazoa
AT silkelaakmann highthroughputsequencingthekeytorapidbiodiversityassessmentofmarinemetazoa
_version_ 1725255694205059072