High-Throughput Sequencing-The Key to Rapid Biodiversity Assessment of Marine Metazoa?
The applications of traditional morphological and molecular methods for species identification are greatly restricted by processing speed and on a regional or greater scale are generally considered unfeasible. In this context, high-throughput sequencing, or metagenetics, has been proposed as an effi...
Main Authors: | , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Public Library of Science (PLoS)
2015-01-01
|
Series: | PLoS ONE |
Online Access: | http://europepmc.org/articles/PMC4610693?pdf=render |
id |
doaj-c52a97f6c4d3411283ae9032d5df6c40 |
---|---|
record_format |
Article |
spelling |
doaj-c52a97f6c4d3411283ae9032d5df6c402020-11-25T00:48:33ZengPublic Library of Science (PLoS)PLoS ONE1932-62032015-01-011010e014034210.1371/journal.pone.0140342High-Throughput Sequencing-The Key to Rapid Biodiversity Assessment of Marine Metazoa?Inga MohrbeckMichael J RaupachPedro Martínez ArbizuThomas KnebelsbergerSilke LaakmannThe applications of traditional morphological and molecular methods for species identification are greatly restricted by processing speed and on a regional or greater scale are generally considered unfeasible. In this context, high-throughput sequencing, or metagenetics, has been proposed as an efficient tool to document biodiversity. Here we evaluated the effectiveness of 454 pyrosequencing in marine metazoan community analysis using the 18S rDNA: V1-V2 region. Multiplex pyrosequencing of the V1-V2 region was used to analyze two pooled samples of DNA, one comprising 118 and the other 37 morphologically identified species, and one natural sample taken directly from a North Sea zooplankton community. A DNA reference library comprising all species represented in the pooled samples was created by Sanger sequencing, and this was then used to determine the optimal similarity threshold for species delineation. The optimal threshold was found at 99% species similarity, with 85% identification success. Pyrosequencing was able to identify between fewer species: 67% and 78% of the species in the two pooled samples. Also, a large number of sequences for three species that were not included in the pooled samples were amplified by pyrosequencing, suggesting preferential amplification of some genotypes and the sensitivity of this approach to even low levels of contamination. Conversely, metagenetic analysis of the natural zooplankton sample identified many more species (particularly gelatinous zooplankton and meroplankton) than morphological analysis of a formalin-fixed sample from the same sampling site, suggesting an increased level of taxonomic resolution with pyrosequencing. The study demonstrated that, based on the V1-V2 region, 454 sequencing does not provide accurate species differentiation and reliable taxonomic classification, as it is required in most biodiversity monitoring. The analysis of artificially prepared samples indicated that species detection in pyrosequencing datasets is complicated by potential PCR-based biases and that the V1-V2 marker is poorly resolved for some taxa.http://europepmc.org/articles/PMC4610693?pdf=render |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
Inga Mohrbeck Michael J Raupach Pedro Martínez Arbizu Thomas Knebelsberger Silke Laakmann |
spellingShingle |
Inga Mohrbeck Michael J Raupach Pedro Martínez Arbizu Thomas Knebelsberger Silke Laakmann High-Throughput Sequencing-The Key to Rapid Biodiversity Assessment of Marine Metazoa? PLoS ONE |
author_facet |
Inga Mohrbeck Michael J Raupach Pedro Martínez Arbizu Thomas Knebelsberger Silke Laakmann |
author_sort |
Inga Mohrbeck |
title |
High-Throughput Sequencing-The Key to Rapid Biodiversity Assessment of Marine Metazoa? |
title_short |
High-Throughput Sequencing-The Key to Rapid Biodiversity Assessment of Marine Metazoa? |
title_full |
High-Throughput Sequencing-The Key to Rapid Biodiversity Assessment of Marine Metazoa? |
title_fullStr |
High-Throughput Sequencing-The Key to Rapid Biodiversity Assessment of Marine Metazoa? |
title_full_unstemmed |
High-Throughput Sequencing-The Key to Rapid Biodiversity Assessment of Marine Metazoa? |
title_sort |
high-throughput sequencing-the key to rapid biodiversity assessment of marine metazoa? |
publisher |
Public Library of Science (PLoS) |
series |
PLoS ONE |
issn |
1932-6203 |
publishDate |
2015-01-01 |
description |
The applications of traditional morphological and molecular methods for species identification are greatly restricted by processing speed and on a regional or greater scale are generally considered unfeasible. In this context, high-throughput sequencing, or metagenetics, has been proposed as an efficient tool to document biodiversity. Here we evaluated the effectiveness of 454 pyrosequencing in marine metazoan community analysis using the 18S rDNA: V1-V2 region. Multiplex pyrosequencing of the V1-V2 region was used to analyze two pooled samples of DNA, one comprising 118 and the other 37 morphologically identified species, and one natural sample taken directly from a North Sea zooplankton community. A DNA reference library comprising all species represented in the pooled samples was created by Sanger sequencing, and this was then used to determine the optimal similarity threshold for species delineation. The optimal threshold was found at 99% species similarity, with 85% identification success. Pyrosequencing was able to identify between fewer species: 67% and 78% of the species in the two pooled samples. Also, a large number of sequences for three species that were not included in the pooled samples were amplified by pyrosequencing, suggesting preferential amplification of some genotypes and the sensitivity of this approach to even low levels of contamination. Conversely, metagenetic analysis of the natural zooplankton sample identified many more species (particularly gelatinous zooplankton and meroplankton) than morphological analysis of a formalin-fixed sample from the same sampling site, suggesting an increased level of taxonomic resolution with pyrosequencing. The study demonstrated that, based on the V1-V2 region, 454 sequencing does not provide accurate species differentiation and reliable taxonomic classification, as it is required in most biodiversity monitoring. The analysis of artificially prepared samples indicated that species detection in pyrosequencing datasets is complicated by potential PCR-based biases and that the V1-V2 marker is poorly resolved for some taxa. |
url |
http://europepmc.org/articles/PMC4610693?pdf=render |
work_keys_str_mv |
AT ingamohrbeck highthroughputsequencingthekeytorapidbiodiversityassessmentofmarinemetazoa AT michaeljraupach highthroughputsequencingthekeytorapidbiodiversityassessmentofmarinemetazoa AT pedromartinezarbizu highthroughputsequencingthekeytorapidbiodiversityassessmentofmarinemetazoa AT thomasknebelsberger highthroughputsequencingthekeytorapidbiodiversityassessmentofmarinemetazoa AT silkelaakmann highthroughputsequencingthekeytorapidbiodiversityassessmentofmarinemetazoa |
_version_ |
1725255694205059072 |