Combining next-generation pyrosequencing with microarray for large scale expression analysis in non-model species

<p>Abstract</p> <p>Background</p> <p>The next generation sequencing technologies provide new options to characterize the transcriptome and to develop affordable tools for functional genomics. We describe here an innovative approach for this purpose and demonstrate its p...

Full description

Bibliographic Details
Main Authors: Levenkova Natasha, Kaiser Olaf, Chimento Antonio, Ferrarini Alberto, Bellin Diana, Bouffard Pascal, Delledonne Massimo
Format: Article
Language:English
Published: BMC 2009-11-01
Series:BMC Genomics
Online Access:http://www.biomedcentral.com/1471-2164/10/555
Description
Summary:<p>Abstract</p> <p>Background</p> <p>The next generation sequencing technologies provide new options to characterize the transcriptome and to develop affordable tools for functional genomics. We describe here an innovative approach for this purpose and demonstrate its potential also for non-model species.</p> <p>Results</p> <p>The method we developed is based on 454 sequencing of 3' cDNA fragments from a normalized library constructed from pooled RNAs to generate, through <it>de novo </it>reads assembly, a large catalog of unique transcripts in organisms for which a comprehensive collection of transcripts or the complete genome sequence, is not available. This "virtual transcriptome" provides extensive coverage depth, and can be used for the setting up of a comprehensive microarray based expression analysis. We evaluated the potential of this approach by monitoring gene expression during berry maturation in <it>Vitis vinifera </it>as if no other sequence information was available for this species. The microarray designed on the berries' transcriptome derived from half of a 454 run detected the expression of 19,609 genes, and proved to be more informative than one of the most comprehensive grape microarrays available to date, the GrapeArray 1.2 developed by the Italian-French Public Consortium for Grapevine Genome Characterization, which could detect the expression of 15,556 genes in the same samples.</p> <p>Conclusion</p> <p>This approach provides a powerful method to rapidly build up an extensive catalog of unique transcripts that can be successfully used to develop a microarray for large scale analysis of gene expression in any species, without the need for prior sequence knowledge.</p>
ISSN:1471-2164