Modelling particle movement in conical guide of seeder pneumatic pipe

In the course of the study, methods for ensuring the centeringof particlesofbulkmaterialintheairflowmovinginthepneumaticductofthe seeder were investigated. To solve this problem, it is proposed to use a conical confusor. The aim of the study was to obtain the functional dependences of the movement o...

Full description

Bibliographic Details
Main Authors: Zaitsev Vladimir, Kravtsov Artem, Konovalovi Vladimir
Format: Article
Language:English
Published: EDP Sciences 2020-01-01
Series:E3S Web of Conferences
Online Access:https://www.e3s-conferences.org/articles/e3sconf/pdf/2020/35/e3sconf_interagromash2020_12019.pdf
Description
Summary:In the course of the study, methods for ensuring the centeringof particlesofbulkmaterialintheairflowmovinginthepneumaticductofthe seeder were investigated. To solve this problem, it is proposed to use a conical confusor. The aim of the study was to obtain the functional dependences of the movement of particles in a conical airflow guide (confusor) for the conditions of transportation of the sown particles on the basis of force analysis and to identify the nature of the movement of the sownparticlesinataperingairflow.Duringthestudy,todescribethemotion of particles in a vertical tapering pipe, a system of expressions was substantiated. The developed mathematical model of particle motion in a conical air flow, implemented in the MathCAD mathematical package, allowscalculatingboththeparticletrajectoryandthevelocityparametersof the air flow and the particles to be sown. The digital calculation results in the MathCAD program are in good agreement with the finite element calculations. The magnitude of the error in air velocity is less than 1%. The differences in the velocities of the transported particles in the calculation options do not exceed 7%. The installation of a conical guide helps tofocus the flow of particles in the central part of the narrowed air line. In this case, part of the particles in the central part of the guide will retain the initial longitudinaltrajectory.Theangleattheapexoftheconeandtheparameters of the particles affect the speed and angle of the tangent contact of the particle with theguide.
ISSN:2267-1242