An Update on the Synthesis of Pyrrolo[1,4]benzodiazepines

Pyrrolo[1,4]benzodiazepines are tricyclic compounds that are considered “privileged structures” since they possess a wide range of biological activities. The first encounter with these molecules was the isolation of anthramycin from cultures of Streptomyces, followed by determination of the X-ray cr...

Full description

Bibliographic Details
Main Author: George Varvounis
Format: Article
Language:English
Published: MDPI AG 2016-01-01
Series:Molecules
Subjects:
Online Access:http://www.mdpi.com/1420-3049/21/2/154
Description
Summary:Pyrrolo[1,4]benzodiazepines are tricyclic compounds that are considered “privileged structures” since they possess a wide range of biological activities. The first encounter with these molecules was the isolation of anthramycin from cultures of Streptomyces, followed by determination of the X-ray crystal structure of the molecule and a study of its interaction with DNA. This opened up an intensive synthetic and biological study of the pyrrolo[2,1-c][1,4]benzodiazepines that has culminated in the development of the dimer SJG-136, at present in Phase II clinical trials. The synthetic efforts have brought to light some new synthetic methodology, while the contemporary work is focused on building trimeric pyrrolo[2,1-c][1,4]benzodiazepines linked together by various heterocyclic and aliphatic chains. It is the broad spectrum of biological activities of pyrrolo[1,2-a][1,4]benzodiazepines that has maintained the interest of researchers to date whereas several derivatives of the even less studied pyrrolo[1,2-d][1,4]benzodiazepines were found to be potent non-nucleoside HIV-1 reverse transcriptase inhibitors. The present review is an update on the synthesis of pyrrolo[2,1-c][1,4]benzodiazepines since the last major review of 2011, while the overview of the synthesis of the other two tricyclic isomers is comprehensive.
ISSN:1420-3049