Analisis Hasil Implementasi Data Mining Menggunakan Algoritma Apriori pada Apotek

Penggalian data atau data mining adalah suatu metode yang digunakan untuk mencari dan menggali data tertentu yang tersembunyi dari sebuah data yang besar. Sebagai contoh, data mining dapat digunakan untuk mencari informasi kombinasi item dalam suatu penjualan, memprediksi tingkat kelulusan, menentuk...

Full description

Bibliographic Details
Main Author: aris wijaya wijayanti
Format: Article
Language:Indonesian
Published: Universitas Tanjungpura 2017-06-01
Series:JEPIN (Jurnal Edukasi dan Penelitian Informatika)
Online Access:http://jurnal.untan.ac.id/index.php/jepin/article/view/19534
Description
Summary:Penggalian data atau data mining adalah suatu metode yang digunakan untuk mencari dan menggali data tertentu yang tersembunyi dari sebuah data yang besar. Sebagai contoh, data mining dapat digunakan untuk mencari informasi kombinasi item dalam suatu penjualan, memprediksi tingkat kelulusan, menentukan penerima beasiswa, dll. Data mining sangat berguna bagi suatu lembaga atau perusahaan yang ingin melakukan analisa terhadap data yang besar. Dengan menggunakan data mining, perusahaan akan mampu menganalisa secara tepat, cepat dan akurat dibandingkan dengan menganalisa secara manual.Apotek merupakan salah satu perusahaan yang bisa memanfaatkan metode data mining ini, karena  di apotek transaksi penjualan berlangsung setiap harisehingga semakin lama data penjualan yang tersimpan sangatlah besar.Salah satu pemanfaatan data mining di Apotek adalah untuk menentukan kombinasi item yang paling sering dibeli oleh konsumen. Untuk dapat menentukan kombinasi item yang paling sering dibeli oleh konsumen bisa menggunakan salah satu metode data mining, yaitu metode assosiasi dengan algoritma apriori. Dengan algoritma apriori akan memudahkan pihak apotek untuk mencari kombinasi item penjualan. Hasil dari analisa ini dapat digunakan oleh apotek untuk strategi pemasaran, promosi produk dll.   Kata kunci—Penjualan Obat, Data mining, Association Rules, Apriori
ISSN:2460-0741
2548-9364