Post-Synthesis Tellurium Doping Induced Mirror Twin Boundaries in Monolayer Molybdenum Disulfide
Mirror twin boundaries (MTBs) have brought intriguing one-dimensional physics into the host 2D crystal. In this letter, we reported a chalcogen atom exchange route to induce MTBs into as-formed MoS<sub>2</sub> monolayers via post-synthesis tellurium doping. Results from annular dark-fiel...
Main Authors: | , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
MDPI AG
2020-07-01
|
Series: | Applied Sciences |
Subjects: | |
Online Access: | https://www.mdpi.com/2076-3417/10/14/4758 |
Summary: | Mirror twin boundaries (MTBs) have brought intriguing one-dimensional physics into the host 2D crystal. In this letter, we reported a chalcogen atom exchange route to induce MTBs into as-formed MoS<sub>2</sub> monolayers via post-synthesis tellurium doping. Results from annular dark-field scanning transition electron microscope (ADF-STEM) characterizations revealed that tellurium substituted the sulfur sublattices of MoS<sub>2</sub> preferentially around the edge areas. A large number of MTBs in a configuration of 4|4P-Te was induced therein. Analysis of the lattice structures around MTBs revealed that such a tellurium-substitution-induced MTB formation is an energy-favored process to reduce the strain upon a high ratio of tellurium doping. |
---|---|
ISSN: | 2076-3417 |