SPPD: A Novel Reassembly Method for 3D Terracotta Warrior Fragments Based on Fracture Surface Information

As one of China′s most precious cultural relics, the excavation and protection of the Terracotta Warriors pose significant challenges to archaeologists. A fairly common situation in the excavation is that the Terracotta Warriors are mostly found in the form of fragments, and manual reassembly among...

Full description

Bibliographic Details
Main Authors: Wenmin Yao, Tong Chu, Wenlong Tang, Jingyu Wang, Xin Cao, Fengjun Zhao, Kang Li, Guohua Geng, Mingquan Zhou
Format: Article
Language:English
Published: MDPI AG 2021-08-01
Series:ISPRS International Journal of Geo-Information
Subjects:
Online Access:https://www.mdpi.com/2220-9964/10/8/525
Description
Summary:As one of China′s most precious cultural relics, the excavation and protection of the Terracotta Warriors pose significant challenges to archaeologists. A fairly common situation in the excavation is that the Terracotta Warriors are mostly found in the form of fragments, and manual reassembly among numerous fragments is laborious and time-consuming. This work presents a fracture-surface-based reassembling method, which is composed of SiamesePointNet, principal component analysis (PCA), and deep closest point (DCP), and is named SPPD. Firstly, SiamesePointNet is proposed to determine whether a pair of point clouds of 3D Terracotta Warrior fragments can be reassembled. Then, a coarse-to-fine registration method based on PCA and DCP is proposed to register the two fragments into a reassembled one. The above two steps iterate until the termination condition is met. A series of experiments on real-world examples are conducted, and the results demonstrate that the proposed method performs better than the conventional reassembling methods. We hope this work can provide a valuable tool for the virtual restoration of three-dimension cultural heritage artifacts.
ISSN:2220-9964