Analytical Prediction of Residual Stress in the Machined Surface during Milling
An analytical prediction model for residual stress during milling is established, which considers the thermal-mechanical coupling effect. Considering the effects of thermal-mechanical coupling, the residual stress distribution in the workpiece is determined by the stress loading history according to...
Main Authors: | , , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
MDPI AG
2020-04-01
|
Series: | Metals |
Subjects: | |
Online Access: | https://www.mdpi.com/2075-4701/10/4/498 |
Summary: | An analytical prediction model for residual stress during milling is established, which considers the thermal-mechanical coupling effect. Considering the effects of thermal-mechanical coupling, the residual stress distribution in the workpiece is determined by the stress loading history according to McDowell′s hybrid algorithm. Based on the analysis of the geometric relationship of orthogonal cutting, the prediction model for milling force and residual stress in the machined surface is established. The research results can provide theoretical basis for stress control during milling. |
---|---|
ISSN: | 2075-4701 |