Efficient Shared Execution Processing of k-Nearest Neighbor Joins in Road Networks

We investigate the k-nearest neighbor (kNN) join in road networks to determine the k-nearest neighbors (NNs) from a dataset S to every object in another dataset R. The kNN join is a primitive operation and is widely used in many data mining applications. However, it is an expensive operation because...

Full description

Bibliographic Details
Main Author: Hyung-Ju Cho
Format: Article
Language:English
Published: Hindawi Limited 2018-01-01
Series:Mobile Information Systems
Online Access:http://dx.doi.org/10.1155/2018/1243289
Description
Summary:We investigate the k-nearest neighbor (kNN) join in road networks to determine the k-nearest neighbors (NNs) from a dataset S to every object in another dataset R. The kNN join is a primitive operation and is widely used in many data mining applications. However, it is an expensive operation because it combines the kNN query and the join operation, whereas most existing methods assume the use of the Euclidean distance metric. We alternatively consider the problem of processing kNN joins in road networks where the distance between two points is the length of the shortest path connecting them. We propose a shared execution-based approach called the group-nested loop (GNL) method that can efficiently evaluate kNN joins in road networks by exploiting grouping and shared execution. The GNL method can be easily implemented using existing kNN query algorithms. Extensive experiments using several real-life roadmaps confirm the superior performance and effectiveness of the proposed method in a wide range of problem settings.
ISSN:1574-017X
1875-905X