Oleic acid and peanut oil high in oleic acid reverse the inhibitory effect of insulin production of the inflammatory cytokine TNF-α both <it>in vitro </it>and <it>in vivo </it>systems

<p>Abstract</p> <p>Background</p> <p>Chronic inflammation is a key player in pathogenesis. The inflammatory cytokine, tumor necrosis factor-alpha is a well known inflammatory protein, and has been a therapeutic target for the treatment of diseases such as Rheumatoid Art...

Full description

Bibliographic Details
Main Authors: Chakraborty Goutam, Tadros James H, Garcia Carlos, Gonzalez Andres, Vassiliou Evros K, Toney Jeffrey H
Format: Article
Language:English
Published: BMC 2009-06-01
Series:Lipids in Health and Disease
Online Access:http://www.lipidworld.com/content/8/1/25
id doaj-c43974e38def4e7887b215d9ec883ef5
record_format Article
spelling doaj-c43974e38def4e7887b215d9ec883ef52020-11-24T21:47:08ZengBMCLipids in Health and Disease1476-511X2009-06-01812510.1186/1476-511X-8-25Oleic acid and peanut oil high in oleic acid reverse the inhibitory effect of insulin production of the inflammatory cytokine TNF-α both <it>in vitro </it>and <it>in vivo </it>systemsChakraborty GoutamTadros James HGarcia CarlosGonzalez AndresVassiliou Evros KToney Jeffrey H<p>Abstract</p> <p>Background</p> <p>Chronic inflammation is a key player in pathogenesis. The inflammatory cytokine, tumor necrosis factor-alpha is a well known inflammatory protein, and has been a therapeutic target for the treatment of diseases such as Rheumatoid Arthritis and Crohn's Disease. Obesity is a well known risk factor for developing non-insulin dependent diabetes melitus. Adipose tissue has been shown to produce tumor necrosis factor-alpha, which has the ability to reduce insulin secretion and induce insulin resistance. Based on these observations, we sought to investigate the impact of unsaturated fatty acids such as oleic acid in the presence of TNF-α in terms of insulin production, the molecular mechanisms involved and the in vivo effect of a diet high in oleic acid on a mouse model of type II diabetes, KKA<sup>y</sup>.</p> <p>Methods</p> <p>The rat pancreatic beta cell line INS-1 was used as a cell biological model since it exhibits glucose dependent insulin secretion. Insulin production assessment was carried out using enzyme linked immunosorbent assay and cAMP quantification with competitive ELISA. Viability of TNF-α and oleic acid treated cells was evaluated using flow cytometry. PPAR-γ translocation was assessed using a PPRE based ELISA system. In vivo studies were carried out on adult male KKA<sup>y </sup>mice and glucose levels were measured with a glucometer.</p> <p>Results</p> <p>Oleic acid and peanut oil high in oleic acid were able to enhance insulin production in INS-1. TNF-α inhibited insulin production but pre-treatment with oleic acid reversed this inhibitory effect. The viability status of INS-1 cells treated with TNF-α and oleic acid was not affected. Translocation of the peroxisome proliferator- activated receptor transcription factor to the nucleus was elevated in oleic acid treated cells. Finally, type II diabetic mice that were administered a high oleic acid diet derived from peanut oil, had decreased glucose levels compared to animals administered a high fat diet with no oleic acid.</p> <p>Conclusion</p> <p>Oleic acid was found to be effective in reversing the inhibitory effect in insulin production of the inflammatory cytokine TNF-α. This finding is consistent with the reported therapeutic characteristics of other monounsaturated and polyunsaturated fatty acids. Furthermore, a diet high in oleic acid, which can be easily achieved through consumption of peanuts and olive oil, can have a beneficial effect in type II diabetes and ultimately reverse the negative effects of inflammatory cytokines observed in obesity and non insulin dependent diabetes mellitus.</p> http://www.lipidworld.com/content/8/1/25
collection DOAJ
language English
format Article
sources DOAJ
author Chakraborty Goutam
Tadros James H
Garcia Carlos
Gonzalez Andres
Vassiliou Evros K
Toney Jeffrey H
spellingShingle Chakraborty Goutam
Tadros James H
Garcia Carlos
Gonzalez Andres
Vassiliou Evros K
Toney Jeffrey H
Oleic acid and peanut oil high in oleic acid reverse the inhibitory effect of insulin production of the inflammatory cytokine TNF-α both <it>in vitro </it>and <it>in vivo </it>systems
Lipids in Health and Disease
author_facet Chakraborty Goutam
Tadros James H
Garcia Carlos
Gonzalez Andres
Vassiliou Evros K
Toney Jeffrey H
author_sort Chakraborty Goutam
title Oleic acid and peanut oil high in oleic acid reverse the inhibitory effect of insulin production of the inflammatory cytokine TNF-α both <it>in vitro </it>and <it>in vivo </it>systems
title_short Oleic acid and peanut oil high in oleic acid reverse the inhibitory effect of insulin production of the inflammatory cytokine TNF-α both <it>in vitro </it>and <it>in vivo </it>systems
title_full Oleic acid and peanut oil high in oleic acid reverse the inhibitory effect of insulin production of the inflammatory cytokine TNF-α both <it>in vitro </it>and <it>in vivo </it>systems
title_fullStr Oleic acid and peanut oil high in oleic acid reverse the inhibitory effect of insulin production of the inflammatory cytokine TNF-α both <it>in vitro </it>and <it>in vivo </it>systems
title_full_unstemmed Oleic acid and peanut oil high in oleic acid reverse the inhibitory effect of insulin production of the inflammatory cytokine TNF-α both <it>in vitro </it>and <it>in vivo </it>systems
title_sort oleic acid and peanut oil high in oleic acid reverse the inhibitory effect of insulin production of the inflammatory cytokine tnf-α both <it>in vitro </it>and <it>in vivo </it>systems
publisher BMC
series Lipids in Health and Disease
issn 1476-511X
publishDate 2009-06-01
description <p>Abstract</p> <p>Background</p> <p>Chronic inflammation is a key player in pathogenesis. The inflammatory cytokine, tumor necrosis factor-alpha is a well known inflammatory protein, and has been a therapeutic target for the treatment of diseases such as Rheumatoid Arthritis and Crohn's Disease. Obesity is a well known risk factor for developing non-insulin dependent diabetes melitus. Adipose tissue has been shown to produce tumor necrosis factor-alpha, which has the ability to reduce insulin secretion and induce insulin resistance. Based on these observations, we sought to investigate the impact of unsaturated fatty acids such as oleic acid in the presence of TNF-α in terms of insulin production, the molecular mechanisms involved and the in vivo effect of a diet high in oleic acid on a mouse model of type II diabetes, KKA<sup>y</sup>.</p> <p>Methods</p> <p>The rat pancreatic beta cell line INS-1 was used as a cell biological model since it exhibits glucose dependent insulin secretion. Insulin production assessment was carried out using enzyme linked immunosorbent assay and cAMP quantification with competitive ELISA. Viability of TNF-α and oleic acid treated cells was evaluated using flow cytometry. PPAR-γ translocation was assessed using a PPRE based ELISA system. In vivo studies were carried out on adult male KKA<sup>y </sup>mice and glucose levels were measured with a glucometer.</p> <p>Results</p> <p>Oleic acid and peanut oil high in oleic acid were able to enhance insulin production in INS-1. TNF-α inhibited insulin production but pre-treatment with oleic acid reversed this inhibitory effect. The viability status of INS-1 cells treated with TNF-α and oleic acid was not affected. Translocation of the peroxisome proliferator- activated receptor transcription factor to the nucleus was elevated in oleic acid treated cells. Finally, type II diabetic mice that were administered a high oleic acid diet derived from peanut oil, had decreased glucose levels compared to animals administered a high fat diet with no oleic acid.</p> <p>Conclusion</p> <p>Oleic acid was found to be effective in reversing the inhibitory effect in insulin production of the inflammatory cytokine TNF-α. This finding is consistent with the reported therapeutic characteristics of other monounsaturated and polyunsaturated fatty acids. Furthermore, a diet high in oleic acid, which can be easily achieved through consumption of peanuts and olive oil, can have a beneficial effect in type II diabetes and ultimately reverse the negative effects of inflammatory cytokines observed in obesity and non insulin dependent diabetes mellitus.</p>
url http://www.lipidworld.com/content/8/1/25
work_keys_str_mv AT chakrabortygoutam oleicacidandpeanutoilhighinoleicacidreversetheinhibitoryeffectofinsulinproductionoftheinflammatorycytokinetnfabothitinvitroitanditinvivoitsystems
AT tadrosjamesh oleicacidandpeanutoilhighinoleicacidreversetheinhibitoryeffectofinsulinproductionoftheinflammatorycytokinetnfabothitinvitroitanditinvivoitsystems
AT garciacarlos oleicacidandpeanutoilhighinoleicacidreversetheinhibitoryeffectofinsulinproductionoftheinflammatorycytokinetnfabothitinvitroitanditinvivoitsystems
AT gonzalezandres oleicacidandpeanutoilhighinoleicacidreversetheinhibitoryeffectofinsulinproductionoftheinflammatorycytokinetnfabothitinvitroitanditinvivoitsystems
AT vassiliouevrosk oleicacidandpeanutoilhighinoleicacidreversetheinhibitoryeffectofinsulinproductionoftheinflammatorycytokinetnfabothitinvitroitanditinvivoitsystems
AT toneyjeffreyh oleicacidandpeanutoilhighinoleicacidreversetheinhibitoryeffectofinsulinproductionoftheinflammatorycytokinetnfabothitinvitroitanditinvivoitsystems
_version_ 1725899113123282944