An Extensive Network of TET2-Targeting MicroRNAs Regulates Malignant Hematopoiesis

The Ten-Eleven-Translocation 2 (TET2) gene, which oxidates 5-methylcytosine in DNA to 5-hydroxylmethylcytosine (5hmC), is a key tumor suppressor frequently mutated in hematopoietic malignancies. However, the molecular regulation of TET2 expression is poorly understood. We show that TET2 is under ex...

Full description

Bibliographic Details
Main Authors: Jijun Cheng, Shangqin Guo, Suning Chen, Stephen J. Mastriano, Chaochun Liu, Ana C. D’Alessio, Eriona Hysolli, Yanwen Guo, Hong Yao, Cynthia M. Megyola, Dan Li, Jun Liu, Wen Pan, Christine A. Roden, Xiao-Ling Zhou, Kartoosh Heydari, Jianjun Chen, In-Hyun Park, Ye Ding, Yi Zhang, Jun Lu
Format: Article
Language:English
Published: Elsevier 2013-10-01
Series:Cell Reports
Online Access:http://www.sciencedirect.com/science/article/pii/S221112471300510X
Description
Summary:The Ten-Eleven-Translocation 2 (TET2) gene, which oxidates 5-methylcytosine in DNA to 5-hydroxylmethylcytosine (5hmC), is a key tumor suppressor frequently mutated in hematopoietic malignancies. However, the molecular regulation of TET2 expression is poorly understood. We show that TET2 is under extensive microRNA (miRNA) regulation, and such TET2 targeting is an important pathogenic mechanism in hematopoietic malignancies. Using a high-throughput 3′ UTR activity screen, we identify >30 miRNAs that inhibit TET2 expression and cellular 5hmC. Forced expression of TET2-targeting miRNAs in vivo disrupts normal hematopoiesis, leading to hematopoietic expansion and/or myeloid differentiation bias, whereas coexpression of TET2 corrects these phenotypes. Importantly, several TET2-targeting miRNAs, including miR-125b, miR-29b, miR-29c, miR-101, and miR-7, are preferentially overexpressed in TET2-wild-type acute myeloid leukemia. Our results demonstrate the extensive roles of miRNAs in functionally regulating TET2 and cellular 5hmC and reveal miRNAs with previously unrecognized oncogenic potential. Our work suggests that TET2-targeting miRNAs might be exploited in cancer diagnosis.
ISSN:2211-1247