Symplectic Applicability of Lagrangian Surfaces
We develop an approach to affine symplectic invariant geometry of Lagrangian surfaces by the method of moving frames. The fundamental invariants of elliptic Lagrangian immersions in affine symplectic four-space are derived together with their integrability equations. The invariant setup is applied t...
Main Authors: | , |
---|---|
Format: | Article |
Language: | English |
Published: |
National Academy of Science of Ukraine
2009-06-01
|
Series: | Symmetry, Integrability and Geometry: Methods and Applications |
Subjects: | |
Online Access: | http://dx.doi.org/10.3842/SIGMA.2009.067 |
id |
doaj-c3ea9566c48f4fd8a3c4b3262b8622f9 |
---|---|
record_format |
Article |
spelling |
doaj-c3ea9566c48f4fd8a3c4b3262b8622f92020-11-24T21:25:13ZengNational Academy of Science of UkraineSymmetry, Integrability and Geometry: Methods and Applications1815-06592009-06-015067Symplectic Applicability of Lagrangian SurfacesLorenzo NicolodiEmilio MussoWe develop an approach to affine symplectic invariant geometry of Lagrangian surfaces by the method of moving frames. The fundamental invariants of elliptic Lagrangian immersions in affine symplectic four-space are derived together with their integrability equations. The invariant setup is applied to discuss the question of symplectic applicability for elliptic Lagrangian immersions. Explicit examples are considered.http://dx.doi.org/10.3842/SIGMA.2009.067Lagrangian surfacesaffine symplectic geometrymoving framesdifferential invariantsapplicability |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
Lorenzo Nicolodi Emilio Musso |
spellingShingle |
Lorenzo Nicolodi Emilio Musso Symplectic Applicability of Lagrangian Surfaces Symmetry, Integrability and Geometry: Methods and Applications Lagrangian surfaces affine symplectic geometry moving frames differential invariants applicability |
author_facet |
Lorenzo Nicolodi Emilio Musso |
author_sort |
Lorenzo Nicolodi |
title |
Symplectic Applicability of Lagrangian Surfaces |
title_short |
Symplectic Applicability of Lagrangian Surfaces |
title_full |
Symplectic Applicability of Lagrangian Surfaces |
title_fullStr |
Symplectic Applicability of Lagrangian Surfaces |
title_full_unstemmed |
Symplectic Applicability of Lagrangian Surfaces |
title_sort |
symplectic applicability of lagrangian surfaces |
publisher |
National Academy of Science of Ukraine |
series |
Symmetry, Integrability and Geometry: Methods and Applications |
issn |
1815-0659 |
publishDate |
2009-06-01 |
description |
We develop an approach to affine symplectic invariant geometry of Lagrangian surfaces by the method of moving frames. The fundamental invariants of elliptic Lagrangian immersions in affine symplectic four-space are derived together with their integrability equations. The invariant setup is applied to discuss the question of symplectic applicability for elliptic Lagrangian immersions. Explicit examples are considered. |
topic |
Lagrangian surfaces affine symplectic geometry moving frames differential invariants applicability |
url |
http://dx.doi.org/10.3842/SIGMA.2009.067 |
work_keys_str_mv |
AT lorenzonicolodi symplecticapplicabilityoflagrangiansurfaces AT emiliomusso symplecticapplicabilityoflagrangiansurfaces |
_version_ |
1725984035380920320 |