Decreased bone formation and osteopenia in lamin a/c-deficient mice.

Age-related bone loss is associated with changes in bone cellularity with characteristically low levels of osteoblastogenesis. The mechanisms that explain these changes remain unclear. Although recent in vitro evidence has suggested a new role for proteins of the nuclear envelope in osteoblastogenes...

Full description

Bibliographic Details
Main Authors: Wei Li, Li Sze Yeo, Christopher Vidal, Thomas McCorquodale, Markus Herrmann, Diane Fatkin, Gustavo Duque
Format: Article
Language:English
Published: Public Library of Science (PLoS) 2011-01-01
Series:PLoS ONE
Online Access:http://europepmc.org/articles/PMC3081846?pdf=render
id doaj-c3e4af5aec5745f58cdde884f1952987
record_format Article
spelling doaj-c3e4af5aec5745f58cdde884f19529872020-11-25T02:42:44ZengPublic Library of Science (PLoS)PLoS ONE1932-62032011-01-0164e1931310.1371/journal.pone.0019313Decreased bone formation and osteopenia in lamin a/c-deficient mice.Wei LiLi Sze YeoChristopher VidalThomas McCorquodaleMarkus HerrmannDiane FatkinGustavo DuqueAge-related bone loss is associated with changes in bone cellularity with characteristically low levels of osteoblastogenesis. The mechanisms that explain these changes remain unclear. Although recent in vitro evidence has suggested a new role for proteins of the nuclear envelope in osteoblastogenesis, the role of these proteins in bone cells differentiation and bone metabolism in vivo remains unknown. In this study, we used the lamin A/C null (Lmna⁻/⁻) mice to identify the role of lamin A/C in bone turnover and bone structure in vivo. At three weeks of age, histological and micro computed tomography measurements of femurs in Lmna⁻/⁻ mice revealed a significant decrease in bone mass and microarchitecture in Lmna⁻/⁻ mice as compared with their wild type littermates. Furthermore, quantification of cell numbers after normalization with bone surface revealed a significant reduction in osteoblast and osteocyte numbers in Lmna⁻/⁻ mice compared with their WT littermates. In addition, Lmna⁻/⁻ mice have significantly lower osteoclast number, which show aberrant changes in their shape and size. Finally, mechanistic analysis demonstrated that absence of lamin A/C is associated with increase expression of MAN-1 a protein of the nuclear envelope closely regulated by lamin A/C, which also colocalizes with Runx2 thus affecting its capacity as osteogenic transcription factor. In summary, these data clearly indicate that the presence of lamin A/C is necessary for normal bone turnover in vivo and that absence of lamin A/C induces low bone turnover osteopenia resembling the cellular changes of age-related bone loss.http://europepmc.org/articles/PMC3081846?pdf=render
collection DOAJ
language English
format Article
sources DOAJ
author Wei Li
Li Sze Yeo
Christopher Vidal
Thomas McCorquodale
Markus Herrmann
Diane Fatkin
Gustavo Duque
spellingShingle Wei Li
Li Sze Yeo
Christopher Vidal
Thomas McCorquodale
Markus Herrmann
Diane Fatkin
Gustavo Duque
Decreased bone formation and osteopenia in lamin a/c-deficient mice.
PLoS ONE
author_facet Wei Li
Li Sze Yeo
Christopher Vidal
Thomas McCorquodale
Markus Herrmann
Diane Fatkin
Gustavo Duque
author_sort Wei Li
title Decreased bone formation and osteopenia in lamin a/c-deficient mice.
title_short Decreased bone formation and osteopenia in lamin a/c-deficient mice.
title_full Decreased bone formation and osteopenia in lamin a/c-deficient mice.
title_fullStr Decreased bone formation and osteopenia in lamin a/c-deficient mice.
title_full_unstemmed Decreased bone formation and osteopenia in lamin a/c-deficient mice.
title_sort decreased bone formation and osteopenia in lamin a/c-deficient mice.
publisher Public Library of Science (PLoS)
series PLoS ONE
issn 1932-6203
publishDate 2011-01-01
description Age-related bone loss is associated with changes in bone cellularity with characteristically low levels of osteoblastogenesis. The mechanisms that explain these changes remain unclear. Although recent in vitro evidence has suggested a new role for proteins of the nuclear envelope in osteoblastogenesis, the role of these proteins in bone cells differentiation and bone metabolism in vivo remains unknown. In this study, we used the lamin A/C null (Lmna⁻/⁻) mice to identify the role of lamin A/C in bone turnover and bone structure in vivo. At three weeks of age, histological and micro computed tomography measurements of femurs in Lmna⁻/⁻ mice revealed a significant decrease in bone mass and microarchitecture in Lmna⁻/⁻ mice as compared with their wild type littermates. Furthermore, quantification of cell numbers after normalization with bone surface revealed a significant reduction in osteoblast and osteocyte numbers in Lmna⁻/⁻ mice compared with their WT littermates. In addition, Lmna⁻/⁻ mice have significantly lower osteoclast number, which show aberrant changes in their shape and size. Finally, mechanistic analysis demonstrated that absence of lamin A/C is associated with increase expression of MAN-1 a protein of the nuclear envelope closely regulated by lamin A/C, which also colocalizes with Runx2 thus affecting its capacity as osteogenic transcription factor. In summary, these data clearly indicate that the presence of lamin A/C is necessary for normal bone turnover in vivo and that absence of lamin A/C induces low bone turnover osteopenia resembling the cellular changes of age-related bone loss.
url http://europepmc.org/articles/PMC3081846?pdf=render
work_keys_str_mv AT weili decreasedboneformationandosteopeniainlaminacdeficientmice
AT liszeyeo decreasedboneformationandosteopeniainlaminacdeficientmice
AT christophervidal decreasedboneformationandosteopeniainlaminacdeficientmice
AT thomasmccorquodale decreasedboneformationandosteopeniainlaminacdeficientmice
AT markusherrmann decreasedboneformationandosteopeniainlaminacdeficientmice
AT dianefatkin decreasedboneformationandosteopeniainlaminacdeficientmice
AT gustavoduque decreasedboneformationandosteopeniainlaminacdeficientmice
_version_ 1724771800388206592