The rheology of the geological medium of interblock seismically active faults in the continental lithosphere: a key to understanding the generation of the strongest earthquakes in Central Asia

The problem of earthquake forecasting remains challenging, especially considering strong seismic events (M≥8). Strong earthquakes occur most often along the fault planes due to large-amplitude displacements of the contacting blocks. In such cases, the physical parameters of the earthquake foci gener...

Full description

Bibliographic Details
Main Authors: S. I. Sherman, E. A. Gorbunova
Format: Article
Language:English
Published: Institute of the Earth's crust, Siberian Branch of RAS 2018-10-01
Series:Geodinamika i Tektonofizika
Subjects:
Online Access:https://www.gt-crust.ru/jour/article/view/616
Description
Summary:The problem of earthquake forecasting remains challenging, especially considering strong seismic events (M≥8). Strong earthquakes occur most often along the fault planes due to large-amplitude displacements of the contacting blocks. In such cases, the physical parameters of the earthquake foci generation process are estimated on the basis of the concepts describing the destruction of solids. In this paper, we present a new tectonophysical model of strong earthquake foci in the continental lithosphere. In this model, an earthquake focus is viewed as a body whose rheological properties are changing over time throughout the entire seismic period, including the moment of the seismic event initiation, its occurrence and the subsequent stress release in of the geological medium. In the period when a future earthquake source develops and grows, the physical properties of the host rocks are assumed to change substantially, and both the viscosity and the relative shear strength decreases. At the moment of time when a strong earthquake takes place, the viscosity of the rocks in its focus is at its minimum value and thus favorable for high-amplitude interblock shearing under the current regional stress and unchanged geodynamic factors. A decrease in the viscosity is facilitated by an increase in the fault length and leads to weakening of the geological medium and decreases its strength properties. When the earthquake occurs, the viscosity of the rocks in its source is assumed significantly lower than the dynamic viscosity of the lithosphere and not less than one or two orders below the viscosity of the interblock seismically active medium containing the source. It is most likely that at the moment of time when an earthquake takes place, the viscosity in its source is 1017–1019 Pa·s. In our approach, the parameter of viscosity is introduced into the physics of earthquake foci, and the time factor is taken into account when studying the process of earthquake preparation and occurrence, which can be an important step to gaining more knowledge for forecasting of the strongest seismic events (M≥8).
ISSN:2078-502X