Siberian tree-ring and stable isotope proxies as indicators of temperature and moisture changes after major stratospheric volcanic eruptions
<p>Stratospheric volcanic eruptions have far-reaching impacts on global climate and society. Tree rings can provide valuable climatic information on these impacts across different spatial and temporal scales. To detect temperature and hydroclimatic changes after strong stratospheric Common Era...
Main Authors: | , , , , , , , , , , , , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Copernicus Publications
2019-04-01
|
Series: | Climate of the Past |
Online Access: | https://www.clim-past.net/15/685/2019/cp-15-685-2019.pdf |
id |
doaj-c3bb075eb7704b16b5aa637b83ec34b0 |
---|---|
record_format |
Article |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
O. V. Churakova (Sidorova) O. V. Churakova (Sidorova) M. V. Fonti M. Saurer M. Saurer S. Guillet C. Corona P. Fonti V. S. Myglan A. V. Kirdyanov A. V. Kirdyanov A. V. Kirdyanov O. V. Naumova D. V. Ovchinnikov A. V. Shashkin A. V. Shashkin I. P. Panyushkina U. Büntgen U. Büntgen M. K. Hughes E. A. Vaganov E. A. Vaganov E. A. Vaganov R. T. W. Siegwolf R. T. W. Siegwolf M. Stoffel M. Stoffel M. Stoffel |
spellingShingle |
O. V. Churakova (Sidorova) O. V. Churakova (Sidorova) M. V. Fonti M. Saurer M. Saurer S. Guillet C. Corona P. Fonti V. S. Myglan A. V. Kirdyanov A. V. Kirdyanov A. V. Kirdyanov O. V. Naumova D. V. Ovchinnikov A. V. Shashkin A. V. Shashkin I. P. Panyushkina U. Büntgen U. Büntgen M. K. Hughes E. A. Vaganov E. A. Vaganov E. A. Vaganov R. T. W. Siegwolf R. T. W. Siegwolf M. Stoffel M. Stoffel M. Stoffel Siberian tree-ring and stable isotope proxies as indicators of temperature and moisture changes after major stratospheric volcanic eruptions Climate of the Past |
author_facet |
O. V. Churakova (Sidorova) O. V. Churakova (Sidorova) M. V. Fonti M. Saurer M. Saurer S. Guillet C. Corona P. Fonti V. S. Myglan A. V. Kirdyanov A. V. Kirdyanov A. V. Kirdyanov O. V. Naumova D. V. Ovchinnikov A. V. Shashkin A. V. Shashkin I. P. Panyushkina U. Büntgen U. Büntgen M. K. Hughes E. A. Vaganov E. A. Vaganov E. A. Vaganov R. T. W. Siegwolf R. T. W. Siegwolf M. Stoffel M. Stoffel M. Stoffel |
author_sort |
O. V. Churakova (Sidorova) |
title |
Siberian tree-ring and stable isotope proxies as indicators of temperature and moisture changes after major stratospheric volcanic eruptions |
title_short |
Siberian tree-ring and stable isotope proxies as indicators of temperature and moisture changes after major stratospheric volcanic eruptions |
title_full |
Siberian tree-ring and stable isotope proxies as indicators of temperature and moisture changes after major stratospheric volcanic eruptions |
title_fullStr |
Siberian tree-ring and stable isotope proxies as indicators of temperature and moisture changes after major stratospheric volcanic eruptions |
title_full_unstemmed |
Siberian tree-ring and stable isotope proxies as indicators of temperature and moisture changes after major stratospheric volcanic eruptions |
title_sort |
siberian tree-ring and stable isotope proxies as indicators of temperature and moisture changes after major stratospheric volcanic eruptions |
publisher |
Copernicus Publications |
series |
Climate of the Past |
issn |
1814-9324 1814-9332 |
publishDate |
2019-04-01 |
description |
<p>Stratospheric volcanic eruptions have far-reaching impacts on
global climate and society. Tree rings can provide valuable climatic
information on these impacts across different spatial and temporal scales. To
detect temperature and hydroclimatic changes after strong stratospheric
Common Era (CE) volcanic eruptions for the last 1500 years (535 CE unknown,
540 CE unknown, 1257 CE Samalas, 1640 CE Parker, 1815 CE Tambora, and
1991 CE
Pinatubo), we measured and analyzed tree-ring width (TRW), maximum latewood
density (MXD), cell wall thickness (CWT), and <span class="inline-formula"><i>δ</i><sup>13</sup>C</span> and
<span class="inline-formula"><i>δ</i><sup>18</sup>O</span> in tree-ring cellulose chronologies of climate-sensitive
larch trees from three different Siberian regions (northeastern Yakutia –
YAK, eastern Taimyr – TAY, and Russian Altai – ALT).</p>
<p>All tree-ring proxies proved to encode a significant and specific climatic
signal of the growing season. Our findings suggest that TRW, MXD, and CWT
show strong negative summer air temperature anomalies in 536, 541–542, and
1258–1259 at all studied regions. Based on <span class="inline-formula"><i>δ</i><sup>13</sup>C</span>, 536 was
extremely humid at YAK, as was 537–538 in TAY. No extreme hydroclimatic anomalies
occurred in Siberia after the volcanic eruptions in 1640, 1815, and 1991,
except for 1817 at ALT. The signal stored in <span class="inline-formula"><i>δ</i><sup>18</sup>O</span> indicated
significantly lower summer sunshine duration in 542 and 1258–1259 at YAK and
536 at ALT. Our results show that trees growing at YAK<span id="page686"/> and ALT mainly
responded the first year after the eruptions, whereas at TAY, the growth
response occurred after 2 years.</p>
<p>The fact that differences exist in climate responses to volcanic eruptions –
both in space and time – underlines the added value of a multiple tree-ring
proxy assessment. As such, the various indicators used clearly help to
provide a more realistic picture of the impact of volcanic eruption on past
climate dynamics, which is fundamental for an improved understanding of
climate dynamics, but also for the validation of global climate models.</p> |
url |
https://www.clim-past.net/15/685/2019/cp-15-685-2019.pdf |
work_keys_str_mv |
AT ovchurakovasidorova siberiantreeringandstableisotopeproxiesasindicatorsoftemperatureandmoisturechangesaftermajorstratosphericvolcaniceruptions AT ovchurakovasidorova siberiantreeringandstableisotopeproxiesasindicatorsoftemperatureandmoisturechangesaftermajorstratosphericvolcaniceruptions AT mvfonti siberiantreeringandstableisotopeproxiesasindicatorsoftemperatureandmoisturechangesaftermajorstratosphericvolcaniceruptions AT msaurer siberiantreeringandstableisotopeproxiesasindicatorsoftemperatureandmoisturechangesaftermajorstratosphericvolcaniceruptions AT msaurer siberiantreeringandstableisotopeproxiesasindicatorsoftemperatureandmoisturechangesaftermajorstratosphericvolcaniceruptions AT sguillet siberiantreeringandstableisotopeproxiesasindicatorsoftemperatureandmoisturechangesaftermajorstratosphericvolcaniceruptions AT ccorona siberiantreeringandstableisotopeproxiesasindicatorsoftemperatureandmoisturechangesaftermajorstratosphericvolcaniceruptions AT pfonti siberiantreeringandstableisotopeproxiesasindicatorsoftemperatureandmoisturechangesaftermajorstratosphericvolcaniceruptions AT vsmyglan siberiantreeringandstableisotopeproxiesasindicatorsoftemperatureandmoisturechangesaftermajorstratosphericvolcaniceruptions AT avkirdyanov siberiantreeringandstableisotopeproxiesasindicatorsoftemperatureandmoisturechangesaftermajorstratosphericvolcaniceruptions AT avkirdyanov siberiantreeringandstableisotopeproxiesasindicatorsoftemperatureandmoisturechangesaftermajorstratosphericvolcaniceruptions AT avkirdyanov siberiantreeringandstableisotopeproxiesasindicatorsoftemperatureandmoisturechangesaftermajorstratosphericvolcaniceruptions AT ovnaumova siberiantreeringandstableisotopeproxiesasindicatorsoftemperatureandmoisturechangesaftermajorstratosphericvolcaniceruptions AT dvovchinnikov siberiantreeringandstableisotopeproxiesasindicatorsoftemperatureandmoisturechangesaftermajorstratosphericvolcaniceruptions AT avshashkin siberiantreeringandstableisotopeproxiesasindicatorsoftemperatureandmoisturechangesaftermajorstratosphericvolcaniceruptions AT avshashkin siberiantreeringandstableisotopeproxiesasindicatorsoftemperatureandmoisturechangesaftermajorstratosphericvolcaniceruptions AT ippanyushkina siberiantreeringandstableisotopeproxiesasindicatorsoftemperatureandmoisturechangesaftermajorstratosphericvolcaniceruptions AT ubuntgen siberiantreeringandstableisotopeproxiesasindicatorsoftemperatureandmoisturechangesaftermajorstratosphericvolcaniceruptions AT ubuntgen siberiantreeringandstableisotopeproxiesasindicatorsoftemperatureandmoisturechangesaftermajorstratosphericvolcaniceruptions AT mkhughes siberiantreeringandstableisotopeproxiesasindicatorsoftemperatureandmoisturechangesaftermajorstratosphericvolcaniceruptions AT eavaganov siberiantreeringandstableisotopeproxiesasindicatorsoftemperatureandmoisturechangesaftermajorstratosphericvolcaniceruptions AT eavaganov siberiantreeringandstableisotopeproxiesasindicatorsoftemperatureandmoisturechangesaftermajorstratosphericvolcaniceruptions AT eavaganov siberiantreeringandstableisotopeproxiesasindicatorsoftemperatureandmoisturechangesaftermajorstratosphericvolcaniceruptions AT rtwsiegwolf siberiantreeringandstableisotopeproxiesasindicatorsoftemperatureandmoisturechangesaftermajorstratosphericvolcaniceruptions AT rtwsiegwolf siberiantreeringandstableisotopeproxiesasindicatorsoftemperatureandmoisturechangesaftermajorstratosphericvolcaniceruptions AT mstoffel siberiantreeringandstableisotopeproxiesasindicatorsoftemperatureandmoisturechangesaftermajorstratosphericvolcaniceruptions AT mstoffel siberiantreeringandstableisotopeproxiesasindicatorsoftemperatureandmoisturechangesaftermajorstratosphericvolcaniceruptions AT mstoffel siberiantreeringandstableisotopeproxiesasindicatorsoftemperatureandmoisturechangesaftermajorstratosphericvolcaniceruptions |
_version_ |
1725915635197673472 |
spelling |
doaj-c3bb075eb7704b16b5aa637b83ec34b02020-11-24T21:43:05ZengCopernicus PublicationsClimate of the Past1814-93241814-93322019-04-011568570010.5194/cp-15-685-2019Siberian tree-ring and stable isotope proxies as indicators of temperature and moisture changes after major stratospheric volcanic eruptionsO. V. Churakova (Sidorova)0O. V. Churakova (Sidorova)1M. V. Fonti2M. Saurer3M. Saurer4S. Guillet5C. Corona6P. Fonti7V. S. Myglan8A. V. Kirdyanov9A. V. Kirdyanov10A. V. Kirdyanov11O. V. Naumova12D. V. Ovchinnikov13A. V. Shashkin14A. V. Shashkin15I. P. Panyushkina16U. Büntgen17U. Büntgen18M. K. Hughes19E. A. Vaganov20E. A. Vaganov21E. A. Vaganov22R. T. W. Siegwolf23R. T. W. Siegwolf24M. Stoffel25M. Stoffel26M. Stoffel27Institute for Environmental Sciences, University of Geneva, 66 Bvd Carl Vogt, 1205 Geneva, SwitzerlandInstitute of Ecology and Geography, Siberian Federal University, Svobodny pr 79, 660041 Krasnoyarsk, Russian FederationInstitute of Ecology and Geography, Siberian Federal University, Svobodny pr 79, 660041 Krasnoyarsk, Russian FederationSwiss Federal Institute for Forest, Snow and Landscape Research WSL, Zürcherstrasse 111, 8903 Birmensdorf, SwitzerlandPaul Scherrer Institute, 5232 Villigen – PSI, SwitzerlandInstitute for Environmental Sciences, University of Geneva, 66 Bvd Carl Vogt, 1205 Geneva, SwitzerlandUniversité Blaise Pascal, Geolab, UMR 6042 CNRS, 4 rue Ledru, 63057 Clermont-Ferrand, FranceSwiss Federal Institute for Forest, Snow and Landscape Research WSL, Zürcherstrasse 111, 8903 Birmensdorf, SwitzerlandInstitute of Humanities, Siberian Federal University, Svobodny pr 82, 660041 Krasnoyarsk, Russian FederationInstitute of Ecology and Geography, Siberian Federal University, Svobodny pr 79, 660041 Krasnoyarsk, Russian FederationV.N. Sukachev Institute of Forest SB RAS, Federal Research Center “Krasnoyarsk Science Center SB RAS”, Akademgorodok 50, bld. 28, 660036 Krasnoyarsk, Russian FederationDepartment of Geography, University of Cambridge, Downing Place, Cambridge CB2 3EN, UKInstitute of Humanities, Siberian Federal University, Svobodny pr 82, 660041 Krasnoyarsk, Russian FederationV.N. Sukachev Institute of Forest SB RAS, Federal Research Center “Krasnoyarsk Science Center SB RAS”, Akademgorodok 50, bld. 28, 660036 Krasnoyarsk, Russian FederationV.N. Sukachev Institute of Forest SB RAS, Federal Research Center “Krasnoyarsk Science Center SB RAS”, Akademgorodok 50, bld. 28, 660036 Krasnoyarsk, Russian FederationInstitute of Fundamental Biology and Biotechnology, Siberian Federal University, Svobodny pr 79, 660041 Krasnoyarsk, Russian FederationLaboratory of Tree-Ring Research, University of Arizona, 1215 E. Lowell St., Tucson, 85721, USASwiss Federal Institute for Forest, Snow and Landscape Research WSL, Zürcherstrasse 111, 8903 Birmensdorf, SwitzerlandDepartment of Geography, University of Cambridge, Downing Place, Cambridge CB2 3EN, UKLaboratory of Tree-Ring Research, University of Arizona, 1215 E. Lowell St., Tucson, 85721, USAInstitute of Ecology and Geography, Siberian Federal University, Svobodny pr 79, 660041 Krasnoyarsk, Russian FederationV.N. Sukachev Institute of Forest SB RAS, Federal Research Center “Krasnoyarsk Science Center SB RAS”, Akademgorodok 50, bld. 28, 660036 Krasnoyarsk, Russian FederationSiberian Federal University, Rectorate, Svobodny pr 79/10, 660041 Krasnoyarsk, Russian FederationSwiss Federal Institute for Forest, Snow and Landscape Research WSL, Zürcherstrasse 111, 8903 Birmensdorf, SwitzerlandPaul Scherrer Institute, 5232 Villigen – PSI, SwitzerlandInstitute for Environmental Sciences, University of Geneva, 66 Bvd Carl Vogt, 1205 Geneva, SwitzerlandDepartment of Earth Sciences, University of Geneva, 13 rue des Maraîchers, 1205 Geneva, SwitzerlandDepartment F.A. Forel for Environmental and Aquatic Sciences, University of Geneva, 66 Boulevard Carl-Vogt, 1205 Geneva, Switzerland<p>Stratospheric volcanic eruptions have far-reaching impacts on global climate and society. Tree rings can provide valuable climatic information on these impacts across different spatial and temporal scales. To detect temperature and hydroclimatic changes after strong stratospheric Common Era (CE) volcanic eruptions for the last 1500 years (535 CE unknown, 540 CE unknown, 1257 CE Samalas, 1640 CE Parker, 1815 CE Tambora, and 1991 CE Pinatubo), we measured and analyzed tree-ring width (TRW), maximum latewood density (MXD), cell wall thickness (CWT), and <span class="inline-formula"><i>δ</i><sup>13</sup>C</span> and <span class="inline-formula"><i>δ</i><sup>18</sup>O</span> in tree-ring cellulose chronologies of climate-sensitive larch trees from three different Siberian regions (northeastern Yakutia – YAK, eastern Taimyr – TAY, and Russian Altai – ALT).</p> <p>All tree-ring proxies proved to encode a significant and specific climatic signal of the growing season. Our findings suggest that TRW, MXD, and CWT show strong negative summer air temperature anomalies in 536, 541–542, and 1258–1259 at all studied regions. Based on <span class="inline-formula"><i>δ</i><sup>13</sup>C</span>, 536 was extremely humid at YAK, as was 537–538 in TAY. No extreme hydroclimatic anomalies occurred in Siberia after the volcanic eruptions in 1640, 1815, and 1991, except for 1817 at ALT. The signal stored in <span class="inline-formula"><i>δ</i><sup>18</sup>O</span> indicated significantly lower summer sunshine duration in 542 and 1258–1259 at YAK and 536 at ALT. Our results show that trees growing at YAK<span id="page686"/> and ALT mainly responded the first year after the eruptions, whereas at TAY, the growth response occurred after 2 years.</p> <p>The fact that differences exist in climate responses to volcanic eruptions – both in space and time – underlines the added value of a multiple tree-ring proxy assessment. As such, the various indicators used clearly help to provide a more realistic picture of the impact of volcanic eruption on past climate dynamics, which is fundamental for an improved understanding of climate dynamics, but also for the validation of global climate models.</p>https://www.clim-past.net/15/685/2019/cp-15-685-2019.pdf |