Siberian tree-ring and stable isotope proxies as indicators of temperature and moisture changes after major stratospheric volcanic eruptions

<p>Stratospheric volcanic eruptions have far-reaching impacts on global climate and society. Tree rings can provide valuable climatic information on these impacts across different spatial and temporal scales. To detect temperature and hydroclimatic changes after strong stratospheric Common Era...

Full description

Bibliographic Details
Main Authors: O. V. Churakova (Sidorova), M. V. Fonti, M. Saurer, S. Guillet, C. Corona, P. Fonti, V. S. Myglan, A. V. Kirdyanov, O. V. Naumova, D. V. Ovchinnikov, A. V. Shashkin, I. P. Panyushkina, U. Büntgen, M. K. Hughes, E. A. Vaganov, R. T. W. Siegwolf, M. Stoffel
Format: Article
Language:English
Published: Copernicus Publications 2019-04-01
Series:Climate of the Past
Online Access:https://www.clim-past.net/15/685/2019/cp-15-685-2019.pdf
id doaj-c3bb075eb7704b16b5aa637b83ec34b0
record_format Article
collection DOAJ
language English
format Article
sources DOAJ
author O. V. Churakova (Sidorova)
O. V. Churakova (Sidorova)
M. V. Fonti
M. Saurer
M. Saurer
S. Guillet
C. Corona
P. Fonti
V. S. Myglan
A. V. Kirdyanov
A. V. Kirdyanov
A. V. Kirdyanov
O. V. Naumova
D. V. Ovchinnikov
A. V. Shashkin
A. V. Shashkin
I. P. Panyushkina
U. Büntgen
U. Büntgen
M. K. Hughes
E. A. Vaganov
E. A. Vaganov
E. A. Vaganov
R. T. W. Siegwolf
R. T. W. Siegwolf
M. Stoffel
M. Stoffel
M. Stoffel
spellingShingle O. V. Churakova (Sidorova)
O. V. Churakova (Sidorova)
M. V. Fonti
M. Saurer
M. Saurer
S. Guillet
C. Corona
P. Fonti
V. S. Myglan
A. V. Kirdyanov
A. V. Kirdyanov
A. V. Kirdyanov
O. V. Naumova
D. V. Ovchinnikov
A. V. Shashkin
A. V. Shashkin
I. P. Panyushkina
U. Büntgen
U. Büntgen
M. K. Hughes
E. A. Vaganov
E. A. Vaganov
E. A. Vaganov
R. T. W. Siegwolf
R. T. W. Siegwolf
M. Stoffel
M. Stoffel
M. Stoffel
Siberian tree-ring and stable isotope proxies as indicators of temperature and moisture changes after major stratospheric volcanic eruptions
Climate of the Past
author_facet O. V. Churakova (Sidorova)
O. V. Churakova (Sidorova)
M. V. Fonti
M. Saurer
M. Saurer
S. Guillet
C. Corona
P. Fonti
V. S. Myglan
A. V. Kirdyanov
A. V. Kirdyanov
A. V. Kirdyanov
O. V. Naumova
D. V. Ovchinnikov
A. V. Shashkin
A. V. Shashkin
I. P. Panyushkina
U. Büntgen
U. Büntgen
M. K. Hughes
E. A. Vaganov
E. A. Vaganov
E. A. Vaganov
R. T. W. Siegwolf
R. T. W. Siegwolf
M. Stoffel
M. Stoffel
M. Stoffel
author_sort O. V. Churakova (Sidorova)
title Siberian tree-ring and stable isotope proxies as indicators of temperature and moisture changes after major stratospheric volcanic eruptions
title_short Siberian tree-ring and stable isotope proxies as indicators of temperature and moisture changes after major stratospheric volcanic eruptions
title_full Siberian tree-ring and stable isotope proxies as indicators of temperature and moisture changes after major stratospheric volcanic eruptions
title_fullStr Siberian tree-ring and stable isotope proxies as indicators of temperature and moisture changes after major stratospheric volcanic eruptions
title_full_unstemmed Siberian tree-ring and stable isotope proxies as indicators of temperature and moisture changes after major stratospheric volcanic eruptions
title_sort siberian tree-ring and stable isotope proxies as indicators of temperature and moisture changes after major stratospheric volcanic eruptions
publisher Copernicus Publications
series Climate of the Past
issn 1814-9324
1814-9332
publishDate 2019-04-01
description <p>Stratospheric volcanic eruptions have far-reaching impacts on global climate and society. Tree rings can provide valuable climatic information on these impacts across different spatial and temporal scales. To detect temperature and hydroclimatic changes after strong stratospheric Common Era (CE) volcanic eruptions for the last 1500 years (535&thinsp;CE unknown, 540&thinsp;CE unknown, 1257&thinsp;CE Samalas, 1640&thinsp;CE Parker, 1815&thinsp;CE Tambora, and 1991&thinsp;CE Pinatubo), we measured and analyzed tree-ring width (TRW), maximum latewood density (MXD), cell wall thickness (CWT), and <span class="inline-formula"><i>δ</i><sup>13</sup>C</span> and <span class="inline-formula"><i>δ</i><sup>18</sup>O</span> in tree-ring cellulose chronologies of climate-sensitive larch trees from three different Siberian regions (northeastern Yakutia – YAK, eastern Taimyr – TAY, and Russian Altai – ALT).</p> <p>All tree-ring proxies proved to encode a significant and specific climatic signal of the growing season. Our findings suggest that TRW, MXD, and CWT show strong negative summer air temperature anomalies in 536, 541–542, and 1258–1259 at all studied regions. Based on <span class="inline-formula"><i>δ</i><sup>13</sup>C</span>, 536 was extremely humid at YAK, as was 537–538 in TAY. No extreme hydroclimatic anomalies occurred in Siberia after the volcanic eruptions in 1640, 1815, and 1991, except for 1817 at ALT. The signal stored in <span class="inline-formula"><i>δ</i><sup>18</sup>O</span> indicated significantly lower summer sunshine duration in 542 and 1258–1259 at YAK and 536 at ALT. Our results show that trees growing at YAK<span id="page686"/> and ALT mainly responded the first year after the eruptions, whereas at TAY, the growth response occurred after 2 years.</p> <p>The fact that differences exist in climate responses to volcanic eruptions – both in space and time – underlines the added value of a multiple tree-ring proxy assessment. As such, the various indicators used clearly help to provide a more realistic picture of the impact of volcanic eruption on past climate dynamics, which is fundamental for an improved understanding of climate dynamics, but also for the validation of global climate models.</p>
url https://www.clim-past.net/15/685/2019/cp-15-685-2019.pdf
work_keys_str_mv AT ovchurakovasidorova siberiantreeringandstableisotopeproxiesasindicatorsoftemperatureandmoisturechangesaftermajorstratosphericvolcaniceruptions
AT ovchurakovasidorova siberiantreeringandstableisotopeproxiesasindicatorsoftemperatureandmoisturechangesaftermajorstratosphericvolcaniceruptions
AT mvfonti siberiantreeringandstableisotopeproxiesasindicatorsoftemperatureandmoisturechangesaftermajorstratosphericvolcaniceruptions
AT msaurer siberiantreeringandstableisotopeproxiesasindicatorsoftemperatureandmoisturechangesaftermajorstratosphericvolcaniceruptions
AT msaurer siberiantreeringandstableisotopeproxiesasindicatorsoftemperatureandmoisturechangesaftermajorstratosphericvolcaniceruptions
AT sguillet siberiantreeringandstableisotopeproxiesasindicatorsoftemperatureandmoisturechangesaftermajorstratosphericvolcaniceruptions
AT ccorona siberiantreeringandstableisotopeproxiesasindicatorsoftemperatureandmoisturechangesaftermajorstratosphericvolcaniceruptions
AT pfonti siberiantreeringandstableisotopeproxiesasindicatorsoftemperatureandmoisturechangesaftermajorstratosphericvolcaniceruptions
AT vsmyglan siberiantreeringandstableisotopeproxiesasindicatorsoftemperatureandmoisturechangesaftermajorstratosphericvolcaniceruptions
AT avkirdyanov siberiantreeringandstableisotopeproxiesasindicatorsoftemperatureandmoisturechangesaftermajorstratosphericvolcaniceruptions
AT avkirdyanov siberiantreeringandstableisotopeproxiesasindicatorsoftemperatureandmoisturechangesaftermajorstratosphericvolcaniceruptions
AT avkirdyanov siberiantreeringandstableisotopeproxiesasindicatorsoftemperatureandmoisturechangesaftermajorstratosphericvolcaniceruptions
AT ovnaumova siberiantreeringandstableisotopeproxiesasindicatorsoftemperatureandmoisturechangesaftermajorstratosphericvolcaniceruptions
AT dvovchinnikov siberiantreeringandstableisotopeproxiesasindicatorsoftemperatureandmoisturechangesaftermajorstratosphericvolcaniceruptions
AT avshashkin siberiantreeringandstableisotopeproxiesasindicatorsoftemperatureandmoisturechangesaftermajorstratosphericvolcaniceruptions
AT avshashkin siberiantreeringandstableisotopeproxiesasindicatorsoftemperatureandmoisturechangesaftermajorstratosphericvolcaniceruptions
AT ippanyushkina siberiantreeringandstableisotopeproxiesasindicatorsoftemperatureandmoisturechangesaftermajorstratosphericvolcaniceruptions
AT ubuntgen siberiantreeringandstableisotopeproxiesasindicatorsoftemperatureandmoisturechangesaftermajorstratosphericvolcaniceruptions
AT ubuntgen siberiantreeringandstableisotopeproxiesasindicatorsoftemperatureandmoisturechangesaftermajorstratosphericvolcaniceruptions
AT mkhughes siberiantreeringandstableisotopeproxiesasindicatorsoftemperatureandmoisturechangesaftermajorstratosphericvolcaniceruptions
AT eavaganov siberiantreeringandstableisotopeproxiesasindicatorsoftemperatureandmoisturechangesaftermajorstratosphericvolcaniceruptions
AT eavaganov siberiantreeringandstableisotopeproxiesasindicatorsoftemperatureandmoisturechangesaftermajorstratosphericvolcaniceruptions
AT eavaganov siberiantreeringandstableisotopeproxiesasindicatorsoftemperatureandmoisturechangesaftermajorstratosphericvolcaniceruptions
AT rtwsiegwolf siberiantreeringandstableisotopeproxiesasindicatorsoftemperatureandmoisturechangesaftermajorstratosphericvolcaniceruptions
AT rtwsiegwolf siberiantreeringandstableisotopeproxiesasindicatorsoftemperatureandmoisturechangesaftermajorstratosphericvolcaniceruptions
AT mstoffel siberiantreeringandstableisotopeproxiesasindicatorsoftemperatureandmoisturechangesaftermajorstratosphericvolcaniceruptions
AT mstoffel siberiantreeringandstableisotopeproxiesasindicatorsoftemperatureandmoisturechangesaftermajorstratosphericvolcaniceruptions
AT mstoffel siberiantreeringandstableisotopeproxiesasindicatorsoftemperatureandmoisturechangesaftermajorstratosphericvolcaniceruptions
_version_ 1725915635197673472
spelling doaj-c3bb075eb7704b16b5aa637b83ec34b02020-11-24T21:43:05ZengCopernicus PublicationsClimate of the Past1814-93241814-93322019-04-011568570010.5194/cp-15-685-2019Siberian tree-ring and stable isotope proxies as indicators of temperature and moisture changes after major stratospheric volcanic eruptionsO. V. Churakova (Sidorova)0O. V. Churakova (Sidorova)1M. V. Fonti2M. Saurer3M. Saurer4S. Guillet5C. Corona6P. Fonti7V. S. Myglan8A. V. Kirdyanov9A. V. Kirdyanov10A. V. Kirdyanov11O. V. Naumova12D. V. Ovchinnikov13A. V. Shashkin14A. V. Shashkin15I. P. Panyushkina16U. Büntgen17U. Büntgen18M. K. Hughes19E. A. Vaganov20E. A. Vaganov21E. A. Vaganov22R. T. W. Siegwolf23R. T. W. Siegwolf24M. Stoffel25M. Stoffel26M. Stoffel27Institute for Environmental Sciences, University of Geneva, 66 Bvd Carl Vogt, 1205 Geneva, SwitzerlandInstitute of Ecology and Geography, Siberian Federal University, Svobodny pr 79, 660041 Krasnoyarsk, Russian FederationInstitute of Ecology and Geography, Siberian Federal University, Svobodny pr 79, 660041 Krasnoyarsk, Russian FederationSwiss Federal Institute for Forest, Snow and Landscape Research WSL, Zürcherstrasse 111, 8903 Birmensdorf, SwitzerlandPaul Scherrer Institute, 5232 Villigen – PSI, SwitzerlandInstitute for Environmental Sciences, University of Geneva, 66 Bvd Carl Vogt, 1205 Geneva, SwitzerlandUniversité Blaise Pascal, Geolab, UMR 6042 CNRS, 4 rue Ledru, 63057 Clermont-Ferrand, FranceSwiss Federal Institute for Forest, Snow and Landscape Research WSL, Zürcherstrasse 111, 8903 Birmensdorf, SwitzerlandInstitute of Humanities, Siberian Federal University, Svobodny pr 82, 660041 Krasnoyarsk, Russian FederationInstitute of Ecology and Geography, Siberian Federal University, Svobodny pr 79, 660041 Krasnoyarsk, Russian FederationV.N. Sukachev Institute of Forest SB RAS, Federal Research Center “Krasnoyarsk Science Center SB RAS”, Akademgorodok 50, bld. 28, 660036 Krasnoyarsk, Russian FederationDepartment of Geography, University of Cambridge, Downing Place, Cambridge CB2 3EN, UKInstitute of Humanities, Siberian Federal University, Svobodny pr 82, 660041 Krasnoyarsk, Russian FederationV.N. Sukachev Institute of Forest SB RAS, Federal Research Center “Krasnoyarsk Science Center SB RAS”, Akademgorodok 50, bld. 28, 660036 Krasnoyarsk, Russian FederationV.N. Sukachev Institute of Forest SB RAS, Federal Research Center “Krasnoyarsk Science Center SB RAS”, Akademgorodok 50, bld. 28, 660036 Krasnoyarsk, Russian FederationInstitute of Fundamental Biology and Biotechnology, Siberian Federal University, Svobodny pr 79, 660041 Krasnoyarsk, Russian FederationLaboratory of Tree-Ring Research, University of Arizona, 1215 E. Lowell St., Tucson, 85721, USASwiss Federal Institute for Forest, Snow and Landscape Research WSL, Zürcherstrasse 111, 8903 Birmensdorf, SwitzerlandDepartment of Geography, University of Cambridge, Downing Place, Cambridge CB2 3EN, UKLaboratory of Tree-Ring Research, University of Arizona, 1215 E. Lowell St., Tucson, 85721, USAInstitute of Ecology and Geography, Siberian Federal University, Svobodny pr 79, 660041 Krasnoyarsk, Russian FederationV.N. Sukachev Institute of Forest SB RAS, Federal Research Center “Krasnoyarsk Science Center SB RAS”, Akademgorodok 50, bld. 28, 660036 Krasnoyarsk, Russian FederationSiberian Federal University, Rectorate, Svobodny pr 79/10, 660041 Krasnoyarsk, Russian FederationSwiss Federal Institute for Forest, Snow and Landscape Research WSL, Zürcherstrasse 111, 8903 Birmensdorf, SwitzerlandPaul Scherrer Institute, 5232 Villigen – PSI, SwitzerlandInstitute for Environmental Sciences, University of Geneva, 66 Bvd Carl Vogt, 1205 Geneva, SwitzerlandDepartment of Earth Sciences, University of Geneva, 13 rue des Maraîchers, 1205 Geneva, SwitzerlandDepartment F.A. Forel for Environmental and Aquatic Sciences, University of Geneva, 66 Boulevard Carl-Vogt, 1205 Geneva, Switzerland<p>Stratospheric volcanic eruptions have far-reaching impacts on global climate and society. Tree rings can provide valuable climatic information on these impacts across different spatial and temporal scales. To detect temperature and hydroclimatic changes after strong stratospheric Common Era (CE) volcanic eruptions for the last 1500 years (535&thinsp;CE unknown, 540&thinsp;CE unknown, 1257&thinsp;CE Samalas, 1640&thinsp;CE Parker, 1815&thinsp;CE Tambora, and 1991&thinsp;CE Pinatubo), we measured and analyzed tree-ring width (TRW), maximum latewood density (MXD), cell wall thickness (CWT), and <span class="inline-formula"><i>δ</i><sup>13</sup>C</span> and <span class="inline-formula"><i>δ</i><sup>18</sup>O</span> in tree-ring cellulose chronologies of climate-sensitive larch trees from three different Siberian regions (northeastern Yakutia – YAK, eastern Taimyr – TAY, and Russian Altai – ALT).</p> <p>All tree-ring proxies proved to encode a significant and specific climatic signal of the growing season. Our findings suggest that TRW, MXD, and CWT show strong negative summer air temperature anomalies in 536, 541–542, and 1258–1259 at all studied regions. Based on <span class="inline-formula"><i>δ</i><sup>13</sup>C</span>, 536 was extremely humid at YAK, as was 537–538 in TAY. No extreme hydroclimatic anomalies occurred in Siberia after the volcanic eruptions in 1640, 1815, and 1991, except for 1817 at ALT. The signal stored in <span class="inline-formula"><i>δ</i><sup>18</sup>O</span> indicated significantly lower summer sunshine duration in 542 and 1258–1259 at YAK and 536 at ALT. Our results show that trees growing at YAK<span id="page686"/> and ALT mainly responded the first year after the eruptions, whereas at TAY, the growth response occurred after 2 years.</p> <p>The fact that differences exist in climate responses to volcanic eruptions – both in space and time – underlines the added value of a multiple tree-ring proxy assessment. As such, the various indicators used clearly help to provide a more realistic picture of the impact of volcanic eruption on past climate dynamics, which is fundamental for an improved understanding of climate dynamics, but also for the validation of global climate models.</p>https://www.clim-past.net/15/685/2019/cp-15-685-2019.pdf