Classification of Polarimetric SAR Image Based on Support Vector Machine Using Multiple-Component Scattering Model and Texture Features
<p/> <p>The classification of polarimetric SAR image based on Multiple-Component Scattering Model (MCSM) and Support Vector Machine (SVM) is presented in this paper. MCSM is a potential decomposition method for a general condition. SVM is a popular tool for machine learning tasks involvi...
Main Authors: | , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
SpringerOpen
2010-01-01
|
Series: | EURASIP Journal on Advances in Signal Processing |
Online Access: | http://asp.eurasipjournals.com/content/2010/960831 |
Summary: | <p/> <p>The classification of polarimetric SAR image based on Multiple-Component Scattering Model (MCSM) and Support Vector Machine (SVM) is presented in this paper. MCSM is a potential decomposition method for a general condition. SVM is a popular tool for machine learning tasks involving classification, recognition, or detection. The scattering powers of single-bounce, double-bounce, volume, helix, and wire scattering components are extracted from fully polarimetric SAR images. Combining with the scattering powers of MCSM and the selected texture features from Gray-level cooccurrence matrix (GCM), SVM is used for the classification of polarimetric SAR image. We generate a validity test for the proposed method using Danish EMISAR L-band fully polarimetric data of Foulum Area (DK), Denmark. The preliminary result indicates that this method can classify most of the areas correctly.</p> |
---|---|
ISSN: | 1687-6172 1687-6180 |