Solvable Model of a Generic Driven Mixture of Trapped Bose–Einstein Condensates and Properties of a Many-Boson Floquet State at the Limit of an Infinite Number of Particles

A solvable model of a periodically driven trapped mixture of Bose–Einstein condensates, consisting of <inline-formula><math display="inline"><semantics><msub><mi>N</mi><mn>1</mn></msub></semantics></math></inline-formula&...

Full description

Bibliographic Details
Main Author: Ofir E. Alon
Format: Article
Language:English
Published: MDPI AG 2020-11-01
Series:Entropy
Subjects:
Online Access:https://www.mdpi.com/1099-4300/22/12/1342
id doaj-c3931cd3144741ba8cfb25a04c800845
record_format Article
spelling doaj-c3931cd3144741ba8cfb25a04c8008452020-11-27T08:10:58ZengMDPI AGEntropy1099-43002020-11-01221342134210.3390/e22121342Solvable Model of a Generic Driven Mixture of Trapped Bose–Einstein Condensates and Properties of a Many-Boson Floquet State at the Limit of an Infinite Number of ParticlesOfir E. Alon0Department of Mathematics, University of Haifa, Haifa 3498838, IsraelA solvable model of a periodically driven trapped mixture of Bose–Einstein condensates, consisting of <inline-formula><math display="inline"><semantics><msub><mi>N</mi><mn>1</mn></msub></semantics></math></inline-formula> interacting bosons of mass <inline-formula><math display="inline"><semantics><msub><mi>m</mi><mn>1</mn></msub></semantics></math></inline-formula> driven by a force of amplitude <inline-formula><math display="inline"><semantics><msub><mi>f</mi><mrow><mi>L</mi><mo>,</mo><mn>1</mn></mrow></msub></semantics></math></inline-formula> and <inline-formula><math display="inline"><semantics><msub><mi>N</mi><mn>2</mn></msub></semantics></math></inline-formula> interacting bosons of mass <inline-formula><math display="inline"><semantics><msub><mi>m</mi><mn>2</mn></msub></semantics></math></inline-formula> driven by a force of amplitude <inline-formula><math display="inline"><semantics><msub><mi>f</mi><mrow><mi>L</mi><mo>,</mo><mn>2</mn></mrow></msub></semantics></math></inline-formula>, is presented. The model generalizes the harmonic-interaction model for mixtures to the time-dependent domain. The resulting many-particle ground Floquet wavefunction and quasienergy, as well as the time-dependent densities and reduced density matrices, are prescribed explicitly and analyzed at the many-body and mean-field levels of theory for finite systems and at the limit of an infinite number of particles. We prove that the time-dependent densities per particle are given at the limit of an infinite number of particles by their respective mean-field quantities, and that the time-dependent reduced one-particle and two-particle density matrices per particle of the driven mixture are <inline-formula><math display="inline"><semantics><mrow><mn>100</mn><mo>%</mo></mrow></semantics></math></inline-formula> condensed. Interestingly, the quasienergy per particle does not coincide with the mean-field value at this limit, unless the relative center-of-mass coordinate of the two Bose–Einstein condensates is not activated by the driving forces <inline-formula><math display="inline"><semantics><msub><mi>f</mi><mrow><mi>L</mi><mo>,</mo><mn>1</mn></mrow></msub></semantics></math></inline-formula> and <inline-formula><math display="inline"><semantics><msub><mi>f</mi><mrow><mi>L</mi><mo>,</mo><mn>2</mn></mrow></msub></semantics></math></inline-formula>. As an application, we investigate the imprinting of angular momentum and its fluctuations when steering a Bose–Einstein condensate by an interacting bosonic impurity and the resulting modes of rotations. Whereas the expectation values per particle of the angular-momentum operator for the many-body and mean-field solutions coincide at the limit of an infinite number of particles, the respective fluctuations can differ substantially. The results are analyzed in terms of the transformation properties of the angular-momentum operator under translations and boosts, and as a function of the interactions between the particles. Implications are briefly discussed.https://www.mdpi.com/1099-4300/22/12/1342solvable modelstime-dependent Schrödinger equationdriven Bose–Einstein dondensatesmixturesFloquet Hamiltoniantime-dependent reduced density matrices
collection DOAJ
language English
format Article
sources DOAJ
author Ofir E. Alon
spellingShingle Ofir E. Alon
Solvable Model of a Generic Driven Mixture of Trapped Bose–Einstein Condensates and Properties of a Many-Boson Floquet State at the Limit of an Infinite Number of Particles
Entropy
solvable models
time-dependent Schrödinger equation
driven Bose–Einstein dondensates
mixtures
Floquet Hamiltonian
time-dependent reduced density matrices
author_facet Ofir E. Alon
author_sort Ofir E. Alon
title Solvable Model of a Generic Driven Mixture of Trapped Bose–Einstein Condensates and Properties of a Many-Boson Floquet State at the Limit of an Infinite Number of Particles
title_short Solvable Model of a Generic Driven Mixture of Trapped Bose–Einstein Condensates and Properties of a Many-Boson Floquet State at the Limit of an Infinite Number of Particles
title_full Solvable Model of a Generic Driven Mixture of Trapped Bose–Einstein Condensates and Properties of a Many-Boson Floquet State at the Limit of an Infinite Number of Particles
title_fullStr Solvable Model of a Generic Driven Mixture of Trapped Bose–Einstein Condensates and Properties of a Many-Boson Floquet State at the Limit of an Infinite Number of Particles
title_full_unstemmed Solvable Model of a Generic Driven Mixture of Trapped Bose–Einstein Condensates and Properties of a Many-Boson Floquet State at the Limit of an Infinite Number of Particles
title_sort solvable model of a generic driven mixture of trapped bose–einstein condensates and properties of a many-boson floquet state at the limit of an infinite number of particles
publisher MDPI AG
series Entropy
issn 1099-4300
publishDate 2020-11-01
description A solvable model of a periodically driven trapped mixture of Bose–Einstein condensates, consisting of <inline-formula><math display="inline"><semantics><msub><mi>N</mi><mn>1</mn></msub></semantics></math></inline-formula> interacting bosons of mass <inline-formula><math display="inline"><semantics><msub><mi>m</mi><mn>1</mn></msub></semantics></math></inline-formula> driven by a force of amplitude <inline-formula><math display="inline"><semantics><msub><mi>f</mi><mrow><mi>L</mi><mo>,</mo><mn>1</mn></mrow></msub></semantics></math></inline-formula> and <inline-formula><math display="inline"><semantics><msub><mi>N</mi><mn>2</mn></msub></semantics></math></inline-formula> interacting bosons of mass <inline-formula><math display="inline"><semantics><msub><mi>m</mi><mn>2</mn></msub></semantics></math></inline-formula> driven by a force of amplitude <inline-formula><math display="inline"><semantics><msub><mi>f</mi><mrow><mi>L</mi><mo>,</mo><mn>2</mn></mrow></msub></semantics></math></inline-formula>, is presented. The model generalizes the harmonic-interaction model for mixtures to the time-dependent domain. The resulting many-particle ground Floquet wavefunction and quasienergy, as well as the time-dependent densities and reduced density matrices, are prescribed explicitly and analyzed at the many-body and mean-field levels of theory for finite systems and at the limit of an infinite number of particles. We prove that the time-dependent densities per particle are given at the limit of an infinite number of particles by their respective mean-field quantities, and that the time-dependent reduced one-particle and two-particle density matrices per particle of the driven mixture are <inline-formula><math display="inline"><semantics><mrow><mn>100</mn><mo>%</mo></mrow></semantics></math></inline-formula> condensed. Interestingly, the quasienergy per particle does not coincide with the mean-field value at this limit, unless the relative center-of-mass coordinate of the two Bose–Einstein condensates is not activated by the driving forces <inline-formula><math display="inline"><semantics><msub><mi>f</mi><mrow><mi>L</mi><mo>,</mo><mn>1</mn></mrow></msub></semantics></math></inline-formula> and <inline-formula><math display="inline"><semantics><msub><mi>f</mi><mrow><mi>L</mi><mo>,</mo><mn>2</mn></mrow></msub></semantics></math></inline-formula>. As an application, we investigate the imprinting of angular momentum and its fluctuations when steering a Bose–Einstein condensate by an interacting bosonic impurity and the resulting modes of rotations. Whereas the expectation values per particle of the angular-momentum operator for the many-body and mean-field solutions coincide at the limit of an infinite number of particles, the respective fluctuations can differ substantially. The results are analyzed in terms of the transformation properties of the angular-momentum operator under translations and boosts, and as a function of the interactions between the particles. Implications are briefly discussed.
topic solvable models
time-dependent Schrödinger equation
driven Bose–Einstein dondensates
mixtures
Floquet Hamiltonian
time-dependent reduced density matrices
url https://www.mdpi.com/1099-4300/22/12/1342
work_keys_str_mv AT ofirealon solvablemodelofagenericdrivenmixtureoftrappedboseeinsteincondensatesandpropertiesofamanybosonfloquetstateatthelimitofaninfinitenumberofparticles
_version_ 1724413624770887680