Photoelectrocatalytic Oxidation of Textile Industry Wastewater by RuO2/IrO2/TaO2 Coated Titanium Electrodes
Photoelectrocatalytic Oxidation (PECO) system prominently increases the migration of photoexcited charges, hinders the fast recombination of electron-hole, and increases the period of photogenerated holes. In this article, we constructed a novel PECO system to degrade textile industry wastewater by...
Main Author: | |
---|---|
Format: | Article |
Language: | English |
Published: |
Technoscience Publications
2021-09-01
|
Series: | Nature Environment and Pollution Technology |
Subjects: | |
Online Access: | https://neptjournal.com/upload-images/(14)B-3771.pdf |
Summary: | Photoelectrocatalytic Oxidation (PECO) system prominently increases the migration of photoexcited charges, hinders the fast recombination of electron-hole, and increases the period of photogenerated holes. In this article, we constructed a novel PECO system to degrade textile industry wastewater by RuO2/IrO2/TaO2 coated titanium electrodes. The result shows that PECO treatment can effectively reduce the color and true color of the secondary pollutants present in the wastewater. It is confirmed that a synergistic effect exists between photocatalysis (PC) and electrocatalysis (EC). Moreover, we discussed the influence of pH, current density, electrolyte concentration, and stirring speed. The maximum decolorization efficiency of textile industry wastewater with a pH of 8.2 was found to be 96% under the optimum condition stirrer speed of 200 rpm, an electrolyte concentration of 0.05M, a current density of 15 mA.cm-2, and at a treatment time of 30 mins. The UV-Visible spectra confirm the degradation of textile industry wastewater. |
---|---|
ISSN: | 0972-6268 2395-3454 |