Medium-throughput processing of whole mount in situ hybridisation experiments into gene expression domains.

Understanding the function and evolution of developmental regulatory networks requires the characterisation and quantification of spatio-temporal gene expression patterns across a range of systems and species. However, most high-throughput methods to measure the dynamics of gene expression do not pr...

Full description

Bibliographic Details
Main Authors: Anton Crombach, Damjan Cicin-Sain, Karl R Wotton, Johannes Jaeger
Format: Article
Language:English
Published: Public Library of Science (PLoS) 2012-01-01
Series:PLoS ONE
Online Access:https://www.ncbi.nlm.nih.gov/pmc/articles/pmid/23029561/?tool=EBI
id doaj-c3622fb115044f5b9bcc942e3a5e3519
record_format Article
spelling doaj-c3622fb115044f5b9bcc942e3a5e35192021-03-03T20:27:13ZengPublic Library of Science (PLoS)PLoS ONE1932-62032012-01-0179e4665810.1371/journal.pone.0046658Medium-throughput processing of whole mount in situ hybridisation experiments into gene expression domains.Anton CrombachDamjan Cicin-SainKarl R WottonJohannes JaegerUnderstanding the function and evolution of developmental regulatory networks requires the characterisation and quantification of spatio-temporal gene expression patterns across a range of systems and species. However, most high-throughput methods to measure the dynamics of gene expression do not preserve the detailed spatial information needed in this context. For this reason, quantification methods based on image bioinformatics have become increasingly important over the past few years. Most available approaches in this field either focus on the detailed and accurate quantification of a small set of gene expression patterns, or attempt high-throughput analysis of spatial expression through binary pattern extraction and large-scale analysis of the resulting datasets. Here we present a robust, "medium-throughput" pipeline to process in situ hybridisation patterns from embryos of different species of flies. It bridges the gap between high-resolution, and high-throughput image processing methods, enabling us to quantify graded expression patterns along the antero-posterior axis of the embryo in an efficient and straightforward manner. Our method is based on a robust enzymatic (colorimetric) in situ hybridisation protocol and rapid data acquisition through wide-field microscopy. Data processing consists of image segmentation, profile extraction, and determination of expression domain boundary positions using a spline approximation. It results in sets of measured boundaries sorted by gene and developmental time point, which are analysed in terms of expression variability or spatio-temporal dynamics. Our method yields integrated time series of spatial gene expression, which can be used to reverse-engineer developmental gene regulatory networks across species. It is easily adaptable to other processes and species, enabling the in silico reconstitution of gene regulatory networks in a wide range of developmental contexts.https://www.ncbi.nlm.nih.gov/pmc/articles/pmid/23029561/?tool=EBI
collection DOAJ
language English
format Article
sources DOAJ
author Anton Crombach
Damjan Cicin-Sain
Karl R Wotton
Johannes Jaeger
spellingShingle Anton Crombach
Damjan Cicin-Sain
Karl R Wotton
Johannes Jaeger
Medium-throughput processing of whole mount in situ hybridisation experiments into gene expression domains.
PLoS ONE
author_facet Anton Crombach
Damjan Cicin-Sain
Karl R Wotton
Johannes Jaeger
author_sort Anton Crombach
title Medium-throughput processing of whole mount in situ hybridisation experiments into gene expression domains.
title_short Medium-throughput processing of whole mount in situ hybridisation experiments into gene expression domains.
title_full Medium-throughput processing of whole mount in situ hybridisation experiments into gene expression domains.
title_fullStr Medium-throughput processing of whole mount in situ hybridisation experiments into gene expression domains.
title_full_unstemmed Medium-throughput processing of whole mount in situ hybridisation experiments into gene expression domains.
title_sort medium-throughput processing of whole mount in situ hybridisation experiments into gene expression domains.
publisher Public Library of Science (PLoS)
series PLoS ONE
issn 1932-6203
publishDate 2012-01-01
description Understanding the function and evolution of developmental regulatory networks requires the characterisation and quantification of spatio-temporal gene expression patterns across a range of systems and species. However, most high-throughput methods to measure the dynamics of gene expression do not preserve the detailed spatial information needed in this context. For this reason, quantification methods based on image bioinformatics have become increasingly important over the past few years. Most available approaches in this field either focus on the detailed and accurate quantification of a small set of gene expression patterns, or attempt high-throughput analysis of spatial expression through binary pattern extraction and large-scale analysis of the resulting datasets. Here we present a robust, "medium-throughput" pipeline to process in situ hybridisation patterns from embryos of different species of flies. It bridges the gap between high-resolution, and high-throughput image processing methods, enabling us to quantify graded expression patterns along the antero-posterior axis of the embryo in an efficient and straightforward manner. Our method is based on a robust enzymatic (colorimetric) in situ hybridisation protocol and rapid data acquisition through wide-field microscopy. Data processing consists of image segmentation, profile extraction, and determination of expression domain boundary positions using a spline approximation. It results in sets of measured boundaries sorted by gene and developmental time point, which are analysed in terms of expression variability or spatio-temporal dynamics. Our method yields integrated time series of spatial gene expression, which can be used to reverse-engineer developmental gene regulatory networks across species. It is easily adaptable to other processes and species, enabling the in silico reconstitution of gene regulatory networks in a wide range of developmental contexts.
url https://www.ncbi.nlm.nih.gov/pmc/articles/pmid/23029561/?tool=EBI
work_keys_str_mv AT antoncrombach mediumthroughputprocessingofwholemountinsituhybridisationexperimentsintogeneexpressiondomains
AT damjancicinsain mediumthroughputprocessingofwholemountinsituhybridisationexperimentsintogeneexpressiondomains
AT karlrwotton mediumthroughputprocessingofwholemountinsituhybridisationexperimentsintogeneexpressiondomains
AT johannesjaeger mediumthroughputprocessingofwholemountinsituhybridisationexperimentsintogeneexpressiondomains
_version_ 1714822424599461888