Summary: | In order to improve the accuracy of wind power prediction and ensure the effective utilization of wind energy, a short-term wind power prediction model based on variational mode decomposition (VMD) and an extreme learning machine (ELM) optimized by an improved grey wolf optimization (GWO) algorithm is proposed. The original wind power sequence is decomposed into series of modal components with different center frequencies by the VMD method and some new sequences are obtained by phase space reconstruction (PSR). Then, the ELM model is established for different new time series, and the improved GWO algorithm is used to optimize its parameters. Finally, the output results are weighted and merged as the final predicted value of wind power. The root-mean-square error (RMSE), mean absolute error (MAE), and mean absolute percentage error (MAPE) of the proposed VMD-improved GWO-ELM prediction model in the paper are 5.9113%, 4.6219%, and 13.01% respectively, which are better than these of ELM, back propagation (BP), and the improved GWO-ELM model. The simulation results show that the proposed model has higher prediction accuracy than other models in short-term wind power prediction.
|