Fabrication of low loss channel waveguide in tungsten-tellurite glass by 11 MeV carbon ion microbeam for telecom C band

Channel waveguides were directly written in Er: TeO2W2O3 glass using 11 MeV C4+ ion microbeam with fluences in the range of 1·1014–5·1016 ion/cm2. The channel waveguides supported a single guided mode at λ = 1540 nm. Propagation losses of the as-irradiated channel waveguides were around 14 dB/cm. A...

Full description

Bibliographic Details
Main Authors: István Bányász, Edit Szilágyi, Istvan Rajta, Gyula U.L. Nagy, Stefano Pelli, Gualtiero Nunzi Conti, Simone Berneschi, Vladimir Havránek, Vaclav Vosecek, Norbert Nagy, Zoltan Szabó, Miklos Veres, Adolfo Speghini
Format: Article
Language:English
Published: Elsevier 2019-12-01
Series:Optical Materials: X
Online Access:http://www.sciencedirect.com/science/article/pii/S2590147819300324
id doaj-c315dbab4bfa4d58ad6845ffb164c367
record_format Article
spelling doaj-c315dbab4bfa4d58ad6845ffb164c3672020-11-25T01:32:37ZengElsevierOptical Materials: X2590-14782019-12-014Fabrication of low loss channel waveguide in tungsten-tellurite glass by 11 MeV carbon ion microbeam for telecom C bandIstván Bányász0Edit Szilágyi1Istvan Rajta2Gyula U.L. Nagy3Stefano Pelli4Gualtiero Nunzi Conti5Simone Berneschi6Vladimir Havránek7Vaclav Vosecek8Norbert Nagy9Zoltan Szabó10Miklos Veres11Adolfo Speghini12Department of Nuclear Materials Science, Wigner Research Centre for Physics, Hungarian Academy of Sciences, P.O.B. 49, H-1525, Budapest, HungaryDepartment of Nuclear Materials Science, Wigner Research Centre for Physics, Hungarian Academy of Sciences, P.O.B. 49, H-1525, Budapest, HungaryMTA Atomki, Institute for Nuclear Research, Hungarian Academy of Sciences, H-4001, Debrecen, P.O. Box 51, HungaryMTA Atomki, Institute for Nuclear Research, Hungarian Academy of Sciences, H-4001, Debrecen, P.O. Box 51, HungaryMDF-Lab, Institute of Applied Physics “Nello Carrara”, IFAC-CNR, Via Madonna del Piano 10, I-50019, Sesto Fiorentino, FI, Italy; Corresponding author.MDF-Lab, Institute of Applied Physics “Nello Carrara”, IFAC-CNR, Via Madonna del Piano 10, I-50019, Sesto Fiorentino, FI, ItalyMDF-Lab, Institute of Applied Physics “Nello Carrara”, IFAC-CNR, Via Madonna del Piano 10, I-50019, Sesto Fiorentino, FI, ItalyNuclear Physics Institute AV CR, Řež near Prague, 250 68, Czech RepublicNuclear Physics Institute AV CR, Řež near Prague, 250 68, Czech RepublicInstitute for Technical Physics and Materials Science, Centre for Energy Research, Hungarian Academy of Sciences, Konkoly-Thege Rd. 29-33, 1121, Budapest, HungaryInstitute for Technical Physics and Materials Science, Centre for Energy Research, Hungarian Academy of Sciences, Konkoly-Thege Rd. 29-33, 1121, Budapest, HungaryDepartment of Applied and Nonlinear Optics, Wigner Research Centre for Physics, Hungarian Academy of Sciences, P.O.B. 49, H-1525, Budapest, HungaryMDF-Lab, Institute of Applied Physics “Nello Carrara”, IFAC-CNR, Via Madonna del Piano 10, I-50019, Sesto Fiorentino, FI, Italy; NRG - Department of Biotechnology, University of Verona, and INSTM, RU of Verona, Strada Le Grazie 15, I-37314, Verona, ItalyChannel waveguides were directly written in Er: TeO2W2O3 glass using 11 MeV C4+ ion microbeam with fluences in the range of 1·1014–5·1016 ion/cm2. The channel waveguides supported a single guided mode at λ = 1540 nm. Propagation losses of the as-irradiated channel waveguides were around 14 dB/cm. A 30-min thermal annealing at 150 °C in air reduced propagation losses at λ = 1400 nm to 1.5 dB/cm. This method produced channel waveguides with confinement and propagation losses comparable to or better than other current methods, such as MeV energy focused proton or helium ion beam writing. Keywords: Integrated optics, Rare earth doped materials, Channel waveguides, Optical design and fabrication, Microstructure fabricationhttp://www.sciencedirect.com/science/article/pii/S2590147819300324
collection DOAJ
language English
format Article
sources DOAJ
author István Bányász
Edit Szilágyi
Istvan Rajta
Gyula U.L. Nagy
Stefano Pelli
Gualtiero Nunzi Conti
Simone Berneschi
Vladimir Havránek
Vaclav Vosecek
Norbert Nagy
Zoltan Szabó
Miklos Veres
Adolfo Speghini
spellingShingle István Bányász
Edit Szilágyi
Istvan Rajta
Gyula U.L. Nagy
Stefano Pelli
Gualtiero Nunzi Conti
Simone Berneschi
Vladimir Havránek
Vaclav Vosecek
Norbert Nagy
Zoltan Szabó
Miklos Veres
Adolfo Speghini
Fabrication of low loss channel waveguide in tungsten-tellurite glass by 11 MeV carbon ion microbeam for telecom C band
Optical Materials: X
author_facet István Bányász
Edit Szilágyi
Istvan Rajta
Gyula U.L. Nagy
Stefano Pelli
Gualtiero Nunzi Conti
Simone Berneschi
Vladimir Havránek
Vaclav Vosecek
Norbert Nagy
Zoltan Szabó
Miklos Veres
Adolfo Speghini
author_sort István Bányász
title Fabrication of low loss channel waveguide in tungsten-tellurite glass by 11 MeV carbon ion microbeam for telecom C band
title_short Fabrication of low loss channel waveguide in tungsten-tellurite glass by 11 MeV carbon ion microbeam for telecom C band
title_full Fabrication of low loss channel waveguide in tungsten-tellurite glass by 11 MeV carbon ion microbeam for telecom C band
title_fullStr Fabrication of low loss channel waveguide in tungsten-tellurite glass by 11 MeV carbon ion microbeam for telecom C band
title_full_unstemmed Fabrication of low loss channel waveguide in tungsten-tellurite glass by 11 MeV carbon ion microbeam for telecom C band
title_sort fabrication of low loss channel waveguide in tungsten-tellurite glass by 11 mev carbon ion microbeam for telecom c band
publisher Elsevier
series Optical Materials: X
issn 2590-1478
publishDate 2019-12-01
description Channel waveguides were directly written in Er: TeO2W2O3 glass using 11 MeV C4+ ion microbeam with fluences in the range of 1·1014–5·1016 ion/cm2. The channel waveguides supported a single guided mode at λ = 1540 nm. Propagation losses of the as-irradiated channel waveguides were around 14 dB/cm. A 30-min thermal annealing at 150 °C in air reduced propagation losses at λ = 1400 nm to 1.5 dB/cm. This method produced channel waveguides with confinement and propagation losses comparable to or better than other current methods, such as MeV energy focused proton or helium ion beam writing. Keywords: Integrated optics, Rare earth doped materials, Channel waveguides, Optical design and fabrication, Microstructure fabrication
url http://www.sciencedirect.com/science/article/pii/S2590147819300324
work_keys_str_mv AT istvanbanyasz fabricationoflowlosschannelwaveguideintungstentelluriteglassby11mevcarbonionmicrobeamfortelecomcband
AT editszilagyi fabricationoflowlosschannelwaveguideintungstentelluriteglassby11mevcarbonionmicrobeamfortelecomcband
AT istvanrajta fabricationoflowlosschannelwaveguideintungstentelluriteglassby11mevcarbonionmicrobeamfortelecomcband
AT gyulaulnagy fabricationoflowlosschannelwaveguideintungstentelluriteglassby11mevcarbonionmicrobeamfortelecomcband
AT stefanopelli fabricationoflowlosschannelwaveguideintungstentelluriteglassby11mevcarbonionmicrobeamfortelecomcband
AT gualtieronunziconti fabricationoflowlosschannelwaveguideintungstentelluriteglassby11mevcarbonionmicrobeamfortelecomcband
AT simoneberneschi fabricationoflowlosschannelwaveguideintungstentelluriteglassby11mevcarbonionmicrobeamfortelecomcband
AT vladimirhavranek fabricationoflowlosschannelwaveguideintungstentelluriteglassby11mevcarbonionmicrobeamfortelecomcband
AT vaclavvosecek fabricationoflowlosschannelwaveguideintungstentelluriteglassby11mevcarbonionmicrobeamfortelecomcband
AT norbertnagy fabricationoflowlosschannelwaveguideintungstentelluriteglassby11mevcarbonionmicrobeamfortelecomcband
AT zoltanszabo fabricationoflowlosschannelwaveguideintungstentelluriteglassby11mevcarbonionmicrobeamfortelecomcband
AT miklosveres fabricationoflowlosschannelwaveguideintungstentelluriteglassby11mevcarbonionmicrobeamfortelecomcband
AT adolfospeghini fabricationoflowlosschannelwaveguideintungstentelluriteglassby11mevcarbonionmicrobeamfortelecomcband
_version_ 1725080939798724608