Symmetry Groups, Similarity Reductions, and Conservation Laws of the Time-Fractional Fujimoto–Watanabe Equation Using Lie Symmetry Analysis Method
In this paper, the time-fractional Fujimoto–Watanabe equation is investigated using the Riemann–Liouville fractional derivative. Symmetry groups and similarity reductions are obtained by virtue of the Lie symmetry analysis approach. Meanwhile, the time-fractional Fujimoto–Watanabe equation is transf...
Main Authors: | , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Hindawi-Wiley
2020-01-01
|
Series: | Complexity |
Online Access: | http://dx.doi.org/10.1155/2020/4830684 |
Summary: | In this paper, the time-fractional Fujimoto–Watanabe equation is investigated using the Riemann–Liouville fractional derivative. Symmetry groups and similarity reductions are obtained by virtue of the Lie symmetry analysis approach. Meanwhile, the time-fractional Fujimoto–Watanabe equation is transformed into three kinds of reduced equations and the third of which is based on Erdélyi–Kober fractional integro-differential operators. Furthermore, the conservation laws are also acquired by Ibragimov’s theory. |
---|---|
ISSN: | 1076-2787 1099-0526 |