Optical Flow and Principal Component Analysis-Based Motion Detection in Outdoor Videos
We propose a joint optical flow and principal component analysis (PCA) method for motion detection. PCA is used to analyze optical flows so that major optical flows corresponding to moving objects in a local window can be better extracted. This joint approach can efficiently detect moving objects an...
Main Authors: | , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
SpringerOpen
2010-01-01
|
Series: | EURASIP Journal on Advances in Signal Processing |
Online Access: | http://dx.doi.org/10.1155/2010/680623 |
Summary: | We propose a joint optical flow and principal component analysis (PCA) method for motion detection. PCA is used to analyze optical flows so that major optical flows corresponding to moving objects in a local window can be better extracted. This joint approach can efficiently detect moving objects and more successfully suppress small turbulence. It is particularly useful for motion detection from outdoor videos with low quality. It can also effectively delineate moving objects in both static and dynamic background. Experimental results demonstrate that this approach outperforms other existing methods by extracting the moving objects more completely with lower false alarms. |
---|---|
ISSN: | 1687-6172 1687-6180 |