Monte Carlo Simulations of the GE Signa PET/MR for Different Radioisotopes
NEMA characterization of PET systems is generally based on 18F because it is the most relevant radioisotope for the clinical use of PET. 18F has a half-life of 109.7 min and decays into stable 18O via β+ emission with a probability of over 96% and a maximum positron energy of 0.633 MeV. Other commer...
Main Authors: | , , , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Frontiers Media S.A.
2020-09-01
|
Series: | Frontiers in Physiology |
Subjects: | |
Online Access: | https://www.frontiersin.org/article/10.3389/fphys.2020.525575/full |
id |
doaj-c2ca8fc86aad44b0abf7eb5d3b5777ec |
---|---|
record_format |
Article |
spelling |
doaj-c2ca8fc86aad44b0abf7eb5d3b5777ec2020-11-25T03:47:23ZengFrontiers Media S.A.Frontiers in Physiology1664-042X2020-09-011110.3389/fphys.2020.525575525575Monte Carlo Simulations of the GE Signa PET/MR for Different RadioisotopesPaulo R. R. V. Caribé0Stefaan Vandenberghe1André Diogo2David Pérez-Benito3Nikos Efthimiou4Charlotte Thyssen5Yves D’Asseler6Michel Koole7Medical Imaging and Signal Processing – MEDISIP, Ghent University, Ghent, BelgiumMedical Imaging and Signal Processing – MEDISIP, Ghent University, Ghent, BelgiumFaculty of Sciences of the University of Lisbon (FCUL), Lisbon, PortugalBioengineering and Aerospace Department, Universidad Carlos III de Madrid, Madrid, SpainDepartment of Physics, University of York, York, United KingdomMedical Imaging and Signal Processing – MEDISIP, Ghent University, Ghent, BelgiumDepartment of Diagnostic Sciences, Faculty of Medicine, Ghent University, Ghent, BelgiumNuclear Medicine and Molecular Imaging, Department of Imaging & Pathology, KU Leuven, Leuven, BelgiumNEMA characterization of PET systems is generally based on 18F because it is the most relevant radioisotope for the clinical use of PET. 18F has a half-life of 109.7 min and decays into stable 18O via β+ emission with a probability of over 96% and a maximum positron energy of 0.633 MeV. Other commercially available PET radioisotopes, such as 82Rb and 68Ga have more complex decay schemes with a variety of prompt gammas, which can directly fall into the energy window and induce false coincidence detections by the PET scanner.MethodsAim of this work was three-fold: (A) Develop a GATE model of the GE Signa PET/MR to perform realistic and relevant Monte Carlo simulations (B) Validate this model with published sensitivity and Noise Equivalent Count Rate (NECR) data for 18F and 68Ga (C) Use the validated GATE-model to predict the system performance for other PET isotopes including 11C, 15O, 13N, 82Rb, and 68Ga and to evaluate the effect of a 3T magnetic field on the positron range.ResultsSimulated sensitivity and NECR tests performed with the GATE-model for different radioisotopes were in line with literature values. Simulated sensitivities for 18F and 68Ga were 21.2 and 19.0/kBq, respectively, for the center position and 21.1 and 19.0 cps/kBq, respectively, for the 10 cm off-center position compared to the corresponding measured values of 21.8 and 20.0 cps/kBq for the center position and 21.1 and 19.6 cps/kBq for the 10 cm off-center position. In terms of NECR, the simulated peak NECR was 216.8 kcps at 17.40 kBq/ml for 18F and 207.1 kcps at 20.10 kBq/ml for 68Ga compared to the measured peak NECR of 216.8 kcps at 18.60 kBq/ml and 205.6 kcps at 20.40 kBq/ml for18F and 68Ga, respectively. For 11C, 13N, and 15O, results confirmed a peak NECR similar to 18F with the effective activity concentration scaled by the inverse of the positron fraction. For 82Rb, and 68Ga, the peak NECR was lower than for 18F while the corresponding activity concentrations were higher. For the higher energy positron emitters, the positron range was confirmed to be tissue-dependent with a reduction of the positron range by a factor of 3 to 4 in the plane perpendicular to the magnetic field and an increased positron range along the direction of the magnetic field.ConclusionMonte-Carlo simulations were used to predict sensitivity and NECR performance of GE Signa PET/MR for 18F, 15O, 13N, 11C, 82Rb, and 68Ga radioisotopes and were in line with literature data. Simulations confirmed that sensitivity and NECR were influenced by the particular decay scheme of each isotope. As expected, the positron range decreased in the direction perpendicular to the 3T magnetic field. However, this will be only partially improving the resolution properties of a clinical PET/MR system due to the limiting spatial resolution of the PET detector.https://www.frontiersin.org/article/10.3389/fphys.2020.525575/fullnuclear medicinePET/MRNEMA NU 2–2012high energy positron emitterspositron range |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
Paulo R. R. V. Caribé Stefaan Vandenberghe André Diogo David Pérez-Benito Nikos Efthimiou Charlotte Thyssen Yves D’Asseler Michel Koole |
spellingShingle |
Paulo R. R. V. Caribé Stefaan Vandenberghe André Diogo David Pérez-Benito Nikos Efthimiou Charlotte Thyssen Yves D’Asseler Michel Koole Monte Carlo Simulations of the GE Signa PET/MR for Different Radioisotopes Frontiers in Physiology nuclear medicine PET/MR NEMA NU 2–2012 high energy positron emitters positron range |
author_facet |
Paulo R. R. V. Caribé Stefaan Vandenberghe André Diogo David Pérez-Benito Nikos Efthimiou Charlotte Thyssen Yves D’Asseler Michel Koole |
author_sort |
Paulo R. R. V. Caribé |
title |
Monte Carlo Simulations of the GE Signa PET/MR for Different Radioisotopes |
title_short |
Monte Carlo Simulations of the GE Signa PET/MR for Different Radioisotopes |
title_full |
Monte Carlo Simulations of the GE Signa PET/MR for Different Radioisotopes |
title_fullStr |
Monte Carlo Simulations of the GE Signa PET/MR for Different Radioisotopes |
title_full_unstemmed |
Monte Carlo Simulations of the GE Signa PET/MR for Different Radioisotopes |
title_sort |
monte carlo simulations of the ge signa pet/mr for different radioisotopes |
publisher |
Frontiers Media S.A. |
series |
Frontiers in Physiology |
issn |
1664-042X |
publishDate |
2020-09-01 |
description |
NEMA characterization of PET systems is generally based on 18F because it is the most relevant radioisotope for the clinical use of PET. 18F has a half-life of 109.7 min and decays into stable 18O via β+ emission with a probability of over 96% and a maximum positron energy of 0.633 MeV. Other commercially available PET radioisotopes, such as 82Rb and 68Ga have more complex decay schemes with a variety of prompt gammas, which can directly fall into the energy window and induce false coincidence detections by the PET scanner.MethodsAim of this work was three-fold: (A) Develop a GATE model of the GE Signa PET/MR to perform realistic and relevant Monte Carlo simulations (B) Validate this model with published sensitivity and Noise Equivalent Count Rate (NECR) data for 18F and 68Ga (C) Use the validated GATE-model to predict the system performance for other PET isotopes including 11C, 15O, 13N, 82Rb, and 68Ga and to evaluate the effect of a 3T magnetic field on the positron range.ResultsSimulated sensitivity and NECR tests performed with the GATE-model for different radioisotopes were in line with literature values. Simulated sensitivities for 18F and 68Ga were 21.2 and 19.0/kBq, respectively, for the center position and 21.1 and 19.0 cps/kBq, respectively, for the 10 cm off-center position compared to the corresponding measured values of 21.8 and 20.0 cps/kBq for the center position and 21.1 and 19.6 cps/kBq for the 10 cm off-center position. In terms of NECR, the simulated peak NECR was 216.8 kcps at 17.40 kBq/ml for 18F and 207.1 kcps at 20.10 kBq/ml for 68Ga compared to the measured peak NECR of 216.8 kcps at 18.60 kBq/ml and 205.6 kcps at 20.40 kBq/ml for18F and 68Ga, respectively. For 11C, 13N, and 15O, results confirmed a peak NECR similar to 18F with the effective activity concentration scaled by the inverse of the positron fraction. For 82Rb, and 68Ga, the peak NECR was lower than for 18F while the corresponding activity concentrations were higher. For the higher energy positron emitters, the positron range was confirmed to be tissue-dependent with a reduction of the positron range by a factor of 3 to 4 in the plane perpendicular to the magnetic field and an increased positron range along the direction of the magnetic field.ConclusionMonte-Carlo simulations were used to predict sensitivity and NECR performance of GE Signa PET/MR for 18F, 15O, 13N, 11C, 82Rb, and 68Ga radioisotopes and were in line with literature data. Simulations confirmed that sensitivity and NECR were influenced by the particular decay scheme of each isotope. As expected, the positron range decreased in the direction perpendicular to the 3T magnetic field. However, this will be only partially improving the resolution properties of a clinical PET/MR system due to the limiting spatial resolution of the PET detector. |
topic |
nuclear medicine PET/MR NEMA NU 2–2012 high energy positron emitters positron range |
url |
https://www.frontiersin.org/article/10.3389/fphys.2020.525575/full |
work_keys_str_mv |
AT paulorrvcaribe montecarlosimulationsofthegesignapetmrfordifferentradioisotopes AT stefaanvandenberghe montecarlosimulationsofthegesignapetmrfordifferentradioisotopes AT andrediogo montecarlosimulationsofthegesignapetmrfordifferentradioisotopes AT davidperezbenito montecarlosimulationsofthegesignapetmrfordifferentradioisotopes AT nikosefthimiou montecarlosimulationsofthegesignapetmrfordifferentradioisotopes AT charlottethyssen montecarlosimulationsofthegesignapetmrfordifferentradioisotopes AT yvesdasseler montecarlosimulationsofthegesignapetmrfordifferentradioisotopes AT michelkoole montecarlosimulationsofthegesignapetmrfordifferentradioisotopes |
_version_ |
1724502124737331200 |