Irreducible Modular Representations of the Reflection Group G(m,1,n)

In an article published in 1980, Farahat and Peel realized the irreducible modular representations of the symmetric group. One year later, Al-Aamily, Morris, and Peel constructed the irreducible modular representations for a Weyl group of type Bn. In both cases, combinatorial methods were used. Almo...

Full description

Bibliographic Details
Main Authors: José O. Araujo, Tim Bratten, Cesar L. Maiarú
Format: Article
Language:English
Published: Hindawi Limited 2015-01-01
Series:Journal of Mathematics
Online Access:http://dx.doi.org/10.1155/2015/808520
id doaj-c2c5fc0dcc634f9388c8de078c818a4b
record_format Article
spelling doaj-c2c5fc0dcc634f9388c8de078c818a4b2020-11-24T20:43:42ZengHindawi LimitedJournal of Mathematics2314-46292314-47852015-01-01201510.1155/2015/808520808520Irreducible Modular Representations of the Reflection Group G(m,1,n)José O. Araujo0Tim Bratten1Cesar L. Maiarú2Facultad de Ciencias Exactas, Universidad Nacional del Centro de la Provincia de Buenos Aires, B7000GHG Tandil, ArgentinaFacultad de Ciencias Exactas, Universidad Nacional del Centro de la Provincia de Buenos Aires, B7000GHG Tandil, ArgentinaFacultad de Ciencias Exactas, Universidad Nacional del Centro de la Provincia de Buenos Aires, B7000GHG Tandil, ArgentinaIn an article published in 1980, Farahat and Peel realized the irreducible modular representations of the symmetric group. One year later, Al-Aamily, Morris, and Peel constructed the irreducible modular representations for a Weyl group of type Bn. In both cases, combinatorial methods were used. Almost twenty years later, using a geometric construction based on the ideas of Macdonald, first Aguado and Araujo and then Araujo, Bigeón, and Gamondi also realized the irreducible modular representations for the Weyl groups of types An and Bn. In this paper, we extend the geometric construction based on the ideas of Macdonald to realize the irreducible modular representations of the complex reflection group of type G(m,1,n).http://dx.doi.org/10.1155/2015/808520
collection DOAJ
language English
format Article
sources DOAJ
author José O. Araujo
Tim Bratten
Cesar L. Maiarú
spellingShingle José O. Araujo
Tim Bratten
Cesar L. Maiarú
Irreducible Modular Representations of the Reflection Group G(m,1,n)
Journal of Mathematics
author_facet José O. Araujo
Tim Bratten
Cesar L. Maiarú
author_sort José O. Araujo
title Irreducible Modular Representations of the Reflection Group G(m,1,n)
title_short Irreducible Modular Representations of the Reflection Group G(m,1,n)
title_full Irreducible Modular Representations of the Reflection Group G(m,1,n)
title_fullStr Irreducible Modular Representations of the Reflection Group G(m,1,n)
title_full_unstemmed Irreducible Modular Representations of the Reflection Group G(m,1,n)
title_sort irreducible modular representations of the reflection group g(m,1,n)
publisher Hindawi Limited
series Journal of Mathematics
issn 2314-4629
2314-4785
publishDate 2015-01-01
description In an article published in 1980, Farahat and Peel realized the irreducible modular representations of the symmetric group. One year later, Al-Aamily, Morris, and Peel constructed the irreducible modular representations for a Weyl group of type Bn. In both cases, combinatorial methods were used. Almost twenty years later, using a geometric construction based on the ideas of Macdonald, first Aguado and Araujo and then Araujo, Bigeón, and Gamondi also realized the irreducible modular representations for the Weyl groups of types An and Bn. In this paper, we extend the geometric construction based on the ideas of Macdonald to realize the irreducible modular representations of the complex reflection group of type G(m,1,n).
url http://dx.doi.org/10.1155/2015/808520
work_keys_str_mv AT joseoaraujo irreduciblemodularrepresentationsofthereflectiongroupgm1n
AT timbratten irreduciblemodularrepresentationsofthereflectiongroupgm1n
AT cesarlmaiaru irreduciblemodularrepresentationsofthereflectiongroupgm1n
_version_ 1716819006873141248