Ecological stoichiometry of Cinnamomum migao leaf litter and soil nutrients under nitrogen deposition in a karst region
Abstract Nitrogen (N) deposition, a major phenomenon of climate change, is increasing with industrialization and more human activity and can affect litter decomposition. Yet it remains unclear whether N deposition will accelerate or inhibit the decomposition of litter in karst regions, which are cha...
Main Authors: | , , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Wiley
2021-09-01
|
Series: | Ecosphere |
Subjects: | |
Online Access: | https://doi.org/10.1002/ecs2.3738 |
id |
doaj-c2c3fc6a2c604b6f9ac99bfc932d759b |
---|---|
record_format |
Article |
spelling |
doaj-c2c3fc6a2c604b6f9ac99bfc932d759b2021-09-28T23:34:39ZengWileyEcosphere2150-89252021-09-01129n/an/a10.1002/ecs2.3738Ecological stoichiometry of Cinnamomum migao leaf litter and soil nutrients under nitrogen deposition in a karst regionXuefeng Xiao0Jingzhong Chen1Xiaofeng Liao2Jiming Liu3Deng Wang4Jia Li5Qiuxiao Yan6Forestry College Research Center of Forest Ecology Guizhou University Guiyang 550025 ChinaForestry College Research Center of Forest Ecology Guizhou University Guiyang 550025 ChinaInstitute of Mountain Resources Guizhou Academy of Science Guiyang 550001 ChinaForestry College Research Center of Forest Ecology Guizhou University Guiyang 550025 ChinaForestry College Research Center of Forest Ecology Guizhou University Guiyang 550025 ChinaForestry College Research Center of Forest Ecology Guizhou University Guiyang 550025 ChinaForestry College Research Center of Forest Ecology Guizhou University Guiyang 550025 ChinaAbstract Nitrogen (N) deposition, a major phenomenon of climate change, is increasing with industrialization and more human activity and can affect litter decomposition. Yet it remains unclear whether N deposition will accelerate or inhibit the decomposition of litter in karst regions, which are characterized by P‐limitation or N and P co‐limited stress conditions in soil. Here, to document the influence of simulated N deposition on litter decomposition in karst, the leaf litter of Cinnamomum migao was studied, this being a dominant perennial woody plant endemic to karst landforms. We conducted a 300‐d field decomposition experiment with four treatments: control (CK); addition of (+) N at 50 kg⋅ha−1⋅a−1 (N1); +N at 150 kg⋅ha−1⋅a−1 (N2), and +N at 300 kg⋅ha−1⋅a−1 (N3), in southwest Guizhou, the largest karst region in China (n = 4 treatments). From each treatment, the litter samples’ remaining mass were measured during the decomposition period, in addition to their nitrogen (N), phosphorus (P), carbon (C), and potassium (K) concentrations, as well as that of soils; the soil’s pH was also measured. The results showed that litter remaining mass increased significantly under nitrogen deposition, which, as expected, acidified the soil. Meanwhile, litter N, P, and K contents responded to nitrogen deposition, whereas C did not. Otherwise, no direct effects of nitrogen deposition upon soil nutrients were detected. The soil nutrient contents were related to the release of the elements in litter. In conclusion, nitrogen deposition suppressed the decomposition of C. migao litter in karst, but the nutrients of karst soil are mainly replenished by litter inputs.https://doi.org/10.1002/ecs2.3738Cinnamomum migaoecological stoichiometrykarst regionlitter decompositionnitrogen depositionsoil nutrient |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
Xuefeng Xiao Jingzhong Chen Xiaofeng Liao Jiming Liu Deng Wang Jia Li Qiuxiao Yan |
spellingShingle |
Xuefeng Xiao Jingzhong Chen Xiaofeng Liao Jiming Liu Deng Wang Jia Li Qiuxiao Yan Ecological stoichiometry of Cinnamomum migao leaf litter and soil nutrients under nitrogen deposition in a karst region Ecosphere Cinnamomum migao ecological stoichiometry karst region litter decomposition nitrogen deposition soil nutrient |
author_facet |
Xuefeng Xiao Jingzhong Chen Xiaofeng Liao Jiming Liu Deng Wang Jia Li Qiuxiao Yan |
author_sort |
Xuefeng Xiao |
title |
Ecological stoichiometry of Cinnamomum migao leaf litter and soil nutrients under nitrogen deposition in a karst region |
title_short |
Ecological stoichiometry of Cinnamomum migao leaf litter and soil nutrients under nitrogen deposition in a karst region |
title_full |
Ecological stoichiometry of Cinnamomum migao leaf litter and soil nutrients under nitrogen deposition in a karst region |
title_fullStr |
Ecological stoichiometry of Cinnamomum migao leaf litter and soil nutrients under nitrogen deposition in a karst region |
title_full_unstemmed |
Ecological stoichiometry of Cinnamomum migao leaf litter and soil nutrients under nitrogen deposition in a karst region |
title_sort |
ecological stoichiometry of cinnamomum migao leaf litter and soil nutrients under nitrogen deposition in a karst region |
publisher |
Wiley |
series |
Ecosphere |
issn |
2150-8925 |
publishDate |
2021-09-01 |
description |
Abstract Nitrogen (N) deposition, a major phenomenon of climate change, is increasing with industrialization and more human activity and can affect litter decomposition. Yet it remains unclear whether N deposition will accelerate or inhibit the decomposition of litter in karst regions, which are characterized by P‐limitation or N and P co‐limited stress conditions in soil. Here, to document the influence of simulated N deposition on litter decomposition in karst, the leaf litter of Cinnamomum migao was studied, this being a dominant perennial woody plant endemic to karst landforms. We conducted a 300‐d field decomposition experiment with four treatments: control (CK); addition of (+) N at 50 kg⋅ha−1⋅a−1 (N1); +N at 150 kg⋅ha−1⋅a−1 (N2), and +N at 300 kg⋅ha−1⋅a−1 (N3), in southwest Guizhou, the largest karst region in China (n = 4 treatments). From each treatment, the litter samples’ remaining mass were measured during the decomposition period, in addition to their nitrogen (N), phosphorus (P), carbon (C), and potassium (K) concentrations, as well as that of soils; the soil’s pH was also measured. The results showed that litter remaining mass increased significantly under nitrogen deposition, which, as expected, acidified the soil. Meanwhile, litter N, P, and K contents responded to nitrogen deposition, whereas C did not. Otherwise, no direct effects of nitrogen deposition upon soil nutrients were detected. The soil nutrient contents were related to the release of the elements in litter. In conclusion, nitrogen deposition suppressed the decomposition of C. migao litter in karst, but the nutrients of karst soil are mainly replenished by litter inputs. |
topic |
Cinnamomum migao ecological stoichiometry karst region litter decomposition nitrogen deposition soil nutrient |
url |
https://doi.org/10.1002/ecs2.3738 |
work_keys_str_mv |
AT xuefengxiao ecologicalstoichiometryofcinnamomummigaoleaflitterandsoilnutrientsundernitrogendepositioninakarstregion AT jingzhongchen ecologicalstoichiometryofcinnamomummigaoleaflitterandsoilnutrientsundernitrogendepositioninakarstregion AT xiaofengliao ecologicalstoichiometryofcinnamomummigaoleaflitterandsoilnutrientsundernitrogendepositioninakarstregion AT jimingliu ecologicalstoichiometryofcinnamomummigaoleaflitterandsoilnutrientsundernitrogendepositioninakarstregion AT dengwang ecologicalstoichiometryofcinnamomummigaoleaflitterandsoilnutrientsundernitrogendepositioninakarstregion AT jiali ecologicalstoichiometryofcinnamomummigaoleaflitterandsoilnutrientsundernitrogendepositioninakarstregion AT qiuxiaoyan ecologicalstoichiometryofcinnamomummigaoleaflitterandsoilnutrientsundernitrogendepositioninakarstregion |
_version_ |
1716865082554580992 |